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Uncertainty quantification is a key component of modern reliability, and safety engineering. Most real-world 

decision-making problems in maintenance planning include uncertain parameters. The uncertainty model might 
be fitted to existing historical data, or expert knowledge, but remains ambiguous (Ellsberg, 1961). When data are 
scarce, or the system evolves in real conditions, the model may end up inaccurate. The impact of model 
misspecification is well-studied in the literature through perturbation and stability analysis (Rahimian and 
Mehrotra, 2022). To address model misspecification, we propose to introduce in RAMS analysis a framework 
from decision-making under uncertainty: the distributionally robust optimization framework. 
A general theory of robust and distributionally robust optimization is presented in (Zhen et al., 2023). We quickly 
recall the setting of distributionally robust optimization. Let us consider a minimization problem with a decision-
dependent objective function , with decisions variables  and uncertain variables . 

Table 1. Optimization under Uncertainty Paradigms. 

Name Formulation Knowledge 

Nominal Problem (NP)   is known 

Robust Optimization (RO)   is unknown,  is known 

Stochastic Programming (SP)   is known,   is a random vector 

Distributionally Robust Optimization (DRO)   is unknwon,  is known,  a random vector 
 

In robust optimization, we consider a worst-case approach, i.e. we seek to find the least worst decision  
given a known uncertainty set . In stochastic optimization, we consider a known probabilistic model , and we 
seek to find the best decision  under . Distributionally robust optimization can be seen as a combination of 
both robust and stochastic optimization, where we consider a family of probabilistic models , and we seek to 
find the worst-case optimal decision . Mathematically, the different approaches are summarized in Table 1. 

We focus on the inner problem of DRO to better understand the role of the ambiguity set . Let equation 
denote the uncertainty quantification problem: , with: (i) ambiguity set  containing all 
distributions that satisfy    moment conditions ; (ii) decision-independent  
objective function ; (iii) known vector of moment bounds ; (iv)  known moment functions 

. 
The crux of DRO lies in modelling the ambiguity using , capturing it from partial knowledge, e.g., mean, 

variance, historical data, expert knowledge, etc., to hedge an adversarial model, i.e., the worst-case distribution. 
For example, existing data may suggest a component has an MTTF of  hours. In which case, we can quantify 
this uncertainty with the set of all time-to-failure distributions with mean  hours, i.e. , 
for  the random variable representing the component lifetime. Additional information may be added to , e.g., 
standard deviation, skewness, etc. The complete decision problem is to find the worst-case optimal decision 

, i.e. , where  may denote a maintenance policy, operating conditions, system 
investment, etc. The DRO paradigm benefits from many advantages over traditional approaches (Kuhn et al., 
2019). Most importantly, the ambiguity set is a powerful tool to model distributional ambiguity from historical 
data, leading to less risk without sacrificing computational tractability or optimality (Van Parys et al., 2021).  
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DRO guarantees better decisions in case of model misspecification in exchange for additional cost. 
Basic maintenance problems often assume the maintained system lifetime distribution is: (i) known a priori or 

estimated from historical data; (ii) stationary; (iii) independent from environmental factors. In practice, these 
assumptions are restrictive, and may lead to ineffective or costly maintenance policies 
al., 2016). These assumptions may be relaxed by assuming partial knowledge of the lifetime distribution. DRO is 
particularly well-suited to model this ambiguity and is proven to be effective in practice (Kuhn et al., 2019; Zhen 
et al., 2023), particularly in finance. 

Let us a consider a portfolio of  independent assets. These  assets are subject to a stochastic degradation 
process. Unfortunately, the only reliable information we have from historical data are the mean and variance 

 and  of the lifetime , where . This information may come from expert knowledge, or 
other estimation methods, e.g., physics models, data-driven prediction models, etc. We can model the ambiguity 
set  as the set of all distributions  with mean  and variance , i.e., . 
Let us assume, we want to minimise the downtime cost  of operating this system, where  is the 
maintenance policy, i.e., the actions  to be taken for each asset. Then, we may formulate this decision 
problem as such . Notice that no assumption has been 
made on the distribution of , but only on the first and second moments. The ambiguity set  can be further 
refined by considering a confidence set around the moments (Delage and Ye, 2010). 

Where dependability management is concerned with performance under required conditions, resilience aims to 
defend against unexpected changes. As such, little data is available to model the adversary. The inherent multi-
stage nature of resilience problems, i.e. planning, response, and recovery, makes them particularly well-suited for 
combinatorial scenario-based approaches. However, these approaches are limited by the curse of dimensionality 
and computational complexity of the solution methods. Existing literature in resilience enhancement is extensive, 
and a wide variety of optimization methods have been used. Applications of DRO to resilience problems are few, 
and often limited to power systems. However, the general framework of DRO is well-suited to generic 
infrastructures under random contingency . 

Consider a networked infrastructure of size . The goal is to invest in additional components to ensure that the 
network remains operational under any scenario of  simultaneous random failures. Each failure scenario can be 
modelled by a binary vector , where  indicates that component  has failed. The set of all 
feasible scenarios is denoted by . Distributional ambiguity around  can be 
modelled by considering partial knowledge of marginal failure probabilities in the form of upper bounds 

. The ambiguity set  is defined as the set of all distributions  with mean component failure probabilities 
 lower than  with  the set of all distributions defined on the -algebra of : 

. The decision problem is then written as the minimization of the investment 
and failure cost  with investment decisions : . 

We have briefly introduced the distributionally robust optimization framework and discussed its potential 
applications in RAMS analysis through two basic examples. We intend to demonstrate its attractive 
computational and interpretability properties by solving the previous toy examples. 
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