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Optimal preventive maintenance (PM) of technical items is one of the most important practical and theoretical 

problems in modern reliability engineering. The first mathematically formulated results describing the optimal 
PM strategy can be found in the seminal paper by Barlow and Hunter (1960). After that, thousands of papers and 
a number of surveys and books entirely devoted to this topic (Asadi et al., 2023; Gertsbakh, 2005; Nakagawa, 
2005; Wang, 2002; Wang and Pham, 2006), to name a few; were published. PM is usually reasonable to execute 
for deteriorating items (e.g., with increasing failure rate). When deterioration processes in items are observable, 

condition-based). See, e.g., some relevant surveys on condition-based maintenance; e.g. see (Alaswad and Xiang, 
2017; Jardine and Banevich, 2005; Keiser et al., 2017) among others.  

Most real populations of technical items are heterogeneous. In reliability context, items with different quality 
may be manufactured due to, e.g., defective resources and components, human errors, 
environment, etc. (Finkelstein and Cha, 2013; Jensen and Petersen, 1982). For modeling heterogeneous lifetimes, 
the distribution function of an item is often indexed by an unobserved random variable   that is called 

Badia et al., 2002; Vaupel et al., 1978). See also (Cha and Finkelstein, 2014) for some examples of 
frailty modeling in reliability analysis and (Finkelstein and Cha, 2013) for basics of stochastic description for 
heterogeneous populations. Thus, as subpopulations are ordered (see the next section for relevant definitions), the 
lifetime of an item from a population for replacement can be stochastically larger than the remaining lifetime of 
an operating item even without the assumption of increasing failure rate (e.g., for constant baseline failure rate!) 
This can be easily seen for the multiplicative mixing model (Finkelstein, 2008; Finkelstein and Cha, 2013) when 
the failure rate of a subpopulation is given by the product . Indeed, when  for the operating item and 

 for the replacement, whereas 
natural question arises: how can we compare these realizations in practice, as the frailty is unobserved!? The 
answer to this question lies in using some additional information in our modeling. 

In our paper we will consider a generalization of the periodic PM modeling (Nakagawa, 2005; Cha and 
Finkelstein, 2018). An item is replaced periodically with period T. The optimal T is obtained as the value 
minimizing the corresponding expected long-run cost rate. Between replacements, the minimal repairs that do not 
change the failure rate of an operating item are performed. In our app
repairs in this interval provide information on realization of frailty Z. The large number of minimal repairs 
indicates that the corresponding failure rate is relatively large and vice versa. The proposed procedure is 
sequential. On the first stage, the optimal T is obtained in a conventional way without considering the number of 
minimal repairs. On the second stage, two possible values of replacement times are considered, i.e.,  and 
the number of minimal repairs at  . If the number of minimal repairs observed in operation is larger than a 
predetermined threshold value, the replacement is performed immediately at , whereas if it is smaller, the 
replacement is performed at . Then the optimal values are obtained, via considering the corresponding 
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optimization problem. In a similar manner, the next stage (involving , ,  and the numbers of minimal 
repairs in  and  ) is defined, etc. 

Thus, starting with the second stage, each stage, depending on the observed numbers of minimal repairs, can 
-

replacement is performed either at optimal   or postponed to  or to .  From general considerations and 
it will be shown numerically that this procedure quickly converges and usually, in practice, it is sufficient to 
consider stage 2 or stage 3 for defining the optimal PM, as the inputs of the next stages, as compared with the 
previous ones are practically non-significant. A similar notion of information-based possible postponement of 
replacement was considered recently in (Finkelstein et al., 2023). However, information in this paper was in the 
form of the observed at inspections degradation of an item modeled by the Poisson or gamma processes, which 
dramatically differs from the heterogeneous setting of a current paper. On the other hand, periodic replacement 
policy for the discrete heterogeneous setting for two subpopulation (weak and strong) was also considered in 
(Cha, 2016). Note that our approach here is applied to continuous frailty case. Moreover, our reasoning, in 
contrast to (Cha, 2016), is based directly on the numbers of minimal repairs observed in relevant time intervals 
and on the subsequent comparison of stages.  
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