Advances in Reliability, Safety and Security

ESREL 2024 Collection of Extended Abstracts

Intelligent Fault Diagnosis Method For Spacecraft Fluid Loop Pumps

Shouqing Huang, Yifang Yu, Qinghai Liu, Jing Wang

National key Laboratory of Science and Technology on Reliability and Environmental Engineering, Beijing, China Beijing Institute of Spacecraft Environment Engineering, Beijing, China

Keywords: spacecraft, space station, fluid loop pump, fault diagnosis, neural network

China space station has achieved full completion, with spacecraft fault diagnosis technology being a pivotal element to ensure the sustained, secure, and reliable operation of the space station. It directly supports a series of important tasks such as status monitoring, life extension, on-orbit maintenance, and spare parts reserves. The paper takes the spacecraft fluid loop pump as an example and conducts research on the application of four neural network models, namely, back propagation neural network (BP), particle swarm neural network (PSO-BP), genetic algorithm neural network (GA-BP), and fuzzy neural network (FNN), in fault diagnosis.

In the field of spacecraft fault diagnosis, NASA and ESA have conducted early research on in-orbit fault diagnosis technology for manned spacecraft. They have developed the manned spacecraft fault management system—the Advanced Caution and Warning System (ACAWS), which achieves spacecraft fault diagnosis and health status management at the system level. However, due to the earlier design era of the International Space Station, its fault diagnosis lacks intelligence.

Specifically, based on the experience of the Mir space station and the international space station, the thermal control subsystem, especially the fluid loop pump, has a higher failure rate. It is a product that should be a key focus of on-orbit maintenance and fault diagnosis for the space station. The fluid loop pump is the "heart" of the spacecraft fluid loop system, and any failure may directly lead to the failure of the fluid loop system and temperature control, directly affecting the safe and reliable operation of various equipment on the spacecraft and even the lives and health of astronauts. Therefore, researching fault diagnosis technology for spacecraft fluid loop pumps is of great significance for ensuring the safety of spacecraft and personnel. In the future, the fault diagnosis technology for spacecraft fluid loop pumps will continuously improve its applicability to diverse faults and multidimensional data, and intelligent fault diagnosis technology is an important development trend.

The studied spacecraft fluid loop pump is equipped with a pressure sensor, a rotation speed sensor, a temperature sensor, and a flow rate sensor, providing data on pressure, speed, temperature, and flow—four categories of status parameters that form the data foundation for fault diagnosis. The proposed fault diagnosis method in this article is based on four neural network models: BP, PSO-BP, GA-BP, and FNN. Each neural network has an input layer with four neurons corresponding to four status parameters and an output layer with one neuron corresponding to the status indicator. Due to space constraints, detailed parameter settings for each neural network are not discussed here.

The training of neural networks is based on a dataset. The dataset in this article reflects the mapping relationship between status parameters and status indicators and is derived from in-orbit data, ground test data, and expert experience data. As shown in Table 1, the dataset includes six categories of status indicators, with temperature (°C), flow rate (L/h), outlet pressure (kPa), and rotation speed (rpm) as inputs, and each status indicator represents a type of status.

The training and prediction effects are evaluated using a 6-fold cross-validation method, with 85% of the data used for training and 15% for testing. After inputting the diagnostic data into the trained neural network model, the model will output the predicted value P_0 of the status indicator. The status indicator P is obtained by rounding to the nearest integer, completing the fault diagnosis. Status indicators 1, 2, 3, 4, 5, and 6 represent "normal", "slight rubbing between the impeller and pump casing", "severe rubbing between the impeller and pump casing",

"fatigue spalling of bearing raceway", "severe fatigue spalling of bearing raceway", and "impeller jammed, pump functionality lost", respectively.

Number	Temperature (°C)	Flow rate (L/h)	Outlet pressure (kPa)	Rotation speed (rpm)	Status indicator						
1	5.30	337.75	339.18	9399.99	1						
2	6.90	310.68	330.83	8286.40	2						
3	15.30	239.61	239.30	5325.57	3						
4	23.28	342.67	329.18	8388.24	4						
5	35.29	237.44	238.14	6313.82	5						
6	4.92	342.68	159.49	1.92	6						

Table 1. Fluid loop pump data set (Partial Data)

Following 6-fold cross-validation calculations, the mean value of mean squared errors and correlation coefficients of the test sets for BP, PSO-BP, GA-BP, and FNN are as follows: 0.1299 and 0.988, 0.2625 and 0.9551, 0.0323 and 0.9945, 0.0286 and 0.9973, respectively. Notably, the FNN exhibits the smallest mean squared error and the highest correlation coefficient, underscoring its superior predictive performance.

Building upon the aforementioned algorithms, a spacecraft fluid loop pump fault diagnosis software has been created. This software encompasses functionalities such as data import, model training, and fault diagnosis. By importing in-orbit data from the two sections of the fluid loop pump depicted in Figure 1 into the software and averaging the four categories of status parameters, the software performs fault diagnosis. The results indicate "normal" and "impeller jammed, pump functionality lost," respectively, aligning seamlessly with the actual on-orbit working states. All four neural networks demonstrate accurate identification of these two states.

pacecraft Fluic ault Diagnosis	l Loop P Softwar	итр :: ве	ijing Institute o		Developed by	b	Spacecraft Flui Fault Diagnosis	d Loop Pur Software	пр в	ijing Institute		Developed by vironment Engineerin
(a Training BP	Training PSC	-BP Training G	A-BP Tra	aining FNN	Fault Diagnosis	2	< a Training BP	Training PSO-BF	P Training G	A-BP Tri	aining FNN	Fault Diagnosis
6 Manually Inputting Diagnostic Data		7 Importing Dia	7 Importing Diagnostic Data		Status Type Normal		6 Manually Inputting Diagnostic Data		7 Importing Diagnostic Data		Status Type Impeller jammed, pump fun	
Temperature(°C)	5.3			Predicted Val of Status Indica	ue 1.09		Temperature("C	5.3			Predicted Va of Status Indica	lue 6.015
Flow Rate(L/h)	340	Temperat	Flow Rat	Outlet Pre	Rotation S		Flow Rate(L/h	340	Temperat	Flow Rat	Outlet Pre	Rotation S
Outlet Pressure(kPa)	0.00	5.3000	337.7512	339.1813	9.4000e+03 -		Outlet Pressure(kPa)	220	5.2100	338.5251	153.9500	3.9167 -
	338	5.3000	338.8342	338.8344	9.3961e+03			338	5.0963	342.0626	154.1812	7.8333
Rotation Speed (rpm)	9350	5.3000	339.1430	338.7188	9.3726e+03		Rotation Speed (rpm	9350	5.2100	340.0677	154.2969	3.9167
		5.3000	340.3753	338.6031	9.2707e+03			5.1988	338.0610	154.2969	7.8333	
Predicted Value of Status Indicator	1.079	5.3000	338.6797	338.8344	9.2864e+03		Predicted Value of Status Indicator	1.079	5.2100	341.9095	154.1812	3.9167
		5.3000	340.0677	338.4875	9.3961e+03				5.2100	340.0677	154.2969	3.9167
Status Type	Normal	5.3000	339.6057	339.2969	9.3256e+03		Status Type	Normal	5.2100	340.2215	154.2969	3.9167
		£ 2000	220.0242	220 0656	0.0000+100				5 3400	117 75+1	454,5004	20167
	М		C) 5.29	96 Mean Flow I	Rate(L/h) 339.3			М	ean Temperature(°C) 5.1	91 Mean Flow	Rate(L/h) 340.
Mean O		an Outlet Pressure(kl	Pa) 338	.8 Mean Spe	Rotation 934			Mean	Outlet Pressure(k	Pa) 154	I.3 Mean Sp	Rotation 5.48: eed (rpm)

Fig. 1 spacecraft fluid loop pump fault diagnosis software and preliminary application verification. (a) normal state; (b)fault state.

The research results of this article demonstrate that all four neural network models in the paper can accurately identify the on-orbit normal and fault states of the fluid loop pump, with the FNN showing the best performance. Intelligent fault diagnosis models like neural networks will be practically applied in more Chinese spacecraft products.

Acknowledgements

The authors express gratitude to the Stable Support Research Project of the National Key Laboratory of Science and Technology on Reliability and Environmental Engineering for the funding support (Grant No. 6142004WDZC210401).

References

- Cao, J., Gu, Y., Chen, G., et al. 2017. The flight experiments of active thermal control system with micro-mechanical pumped fluid loop. Spacecraft Environment Engineering 34(04), 343-349 (in Chinese).
- Colombano, S. P., Spirkovska, L., Baskaran, V. et al. 2013. A system for fault management and fault consequences analysis for NASA's Deep Space Habitat. In AIAA SPACE 2013 Conference and Exposition, San Diego, USA, September 10-12, 1-17.
- McCann, R. S., Spirkovska, L., Smith, I. 2013. Putting integrated system health management to work: development of an advanced caution and warning system for next-generation crewed spacecraft missions. In AIAA Infotech@ Aerospace (I@A) Conference, Boston, USA, August 19-22, 1-15.

Thurman, R.L. 1996. Automation of space station thermal control systems-the important role of software. SAE Technical Paper 961604, 1-11.