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Power transformers are one of a power system's most essential and costly assets. Failure of a transformer may 

lead to high repair costs or irreversible internal damage. Furthermore, failures can result in power supply 
interruption, causing loss of profit for utilities and electrical energy shortages for consumers. Therefore, high 
importance is given to monitoring the transformers' health, detecting, and classifying faults at an early stage, and 
taking the necessary maintenance actions. Traditionally, conventional methods (known as rule-based) have been 
used for transformer health assessment using Dissolved Gas Analysis (DGA) data, which includes 5 key gases. 
These methods include the Duval Triangle (Duval and dePabla, 2001), Duval Pentagon, Doernenburg Ratios, 
Rogers Ratios, IEC Ratio Method (IRM), and Mulier, Schlliesing, and Soldner (MSS) method.  The Duval 
triangle is the most widely used method and is characterized by higher accuracy compared to the other methods 
(Wajid, Rehman et al. 2023). However, the Duval triangle only classifies the faults, given that a DGA sample is 
already classified as faulty (IEEE 2017). Other methods, such as Rogers Ratios, IEC method, and MSC, can 
perform both fault detection and fault classification; however, these methods are not accurate (Wajid et al., 2023). 

Inspired by the limitations of rule-based methods, such as low accuracy and inconsistencies in results  
(Kim et al., 2020), the research community has paid much attention to machine learning (ML) methods in recent 
years. ML methods such as support vector machine, decision trees, and artificial neural networks are frequently 
used for transformer health diagnostics with DGA data (Zhang et al., 2020). Most ML implementations are faced 
with the problem of small datasets, a lack of public datasets, and often a lack of knowledge on the transformer 
state of health (labels) associated with the DGA samples. Therefore, often the results, such as the reported 
accuracy and the applicability of trained models to new datasets are difficult to validate. 

Here, we combine rule-based methods and machine learning to develop models for simultaneous fault 
detection and classification with satisfactory accuracy. We utilize the following four steps to train a model:  
1. Dataset preparation: we utilize a dataset of 10,000 DGA samples from different power grid components, 
including power transformers (with and without online tap changers (OLCT)), measurement transformers, and 
bushings. After preprocessing, we are left with 3,500 DGA samples of power transformers at all voltage levels 
from Switzerland. These samples only include power transforms for which a clear separation between the OLTC 
and the transformer winding compartments is evident. We will refer to this dataset as a training dataset. In 
addition, we utilize 85 recent samples from the Swiss very high voltage power transformers, which are used as a 
test dataset. For both datasets, we do not have the true status of the transformer (healthy, suspicious, faulty, and 
the type of fault for the latter). 
2. Fault detection using statistical approaches: The conventional approaches use reference values (limits) that are 
statistically determined. Typically, the 90th and the 95th percentile of the gas concentrations in a dataset are used 
to determine the status of a transformer (IEEE 2017). Here, we designate the status as healthy (if all gas 
concentrations are below the 90th percentile), suspicious (if at least one gas concentration is between the 90th and 
95th percentile), and faulty (if at least one gas concentration is above the 95th percentile). We calculate the 
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percentiles using 3500 samples and use them as reference values. We refer to this approach as Approach 1. 
Furthermore, we use the approach described in (IEEE 2017), including the percentiles, which are calculated with 
DGA samples from North America. We refer to this approach as Approach 2.  
3. Fault classification using rule-based methods: The DGA samples that are detected as faulty in Step 2, undergo 
fault classification with Duval Triangle, Duval pentagon, Doernenburg ratios, Rogers Ratios, IRM, and MSS. The 
methods have different accuracy expectation, and the literature has shown different performance on different 
datasets. Therefore, we compare all, and take the label that is identified by most. 
4. Fault classification and detection using machine learning: Step 2 and Step 3 allow us to perform fault detection 
and fault classification. We use these labels to train an ML model that simultaneously preforms fault detection 
and classification. We have tested a large set of machine learning methods: Decision trees, Naive Bayes 
Classifiers, Support Vector Machines, Ensemble classifiers (Boosted Trees, Bagged Trees, RUSBoosted Trees), 
and Artificial Neural Networks. The best (high accuracy) models are obtained with an Optimizable ensemble of 
Bagged trees. 

Figure 1 shows the classification of the faulty DGA samples, which are identified with Approach 1. We 
observe that for both datasets the highest concentration of samples is in the thermal fault category (T1-3). 

Fig 1. Fault classification of the DGA samples: (a) the training dataset; (b) the test dataset. T1-thermal fault 1, T2-thermal fault 2, T3-
thermal fault 3, PD-partial discharge, D1-dischare 1, D2-dischare 2, DT-combination of thermal and discharge faults. 

 
We have trained two models, i.e., a separate model (Models 1 and 2) is trained with the labels obtained from 

the conventional fault detection methods (Approaches 1 and 2, see Step 2 in Methodology). The models are 
trained on the training dataset and applied to the test dataset. The classification accuracy of Model 1 is 100 %, 
while Model 2 underperforms, with accuracy of 64 %. The reasons for the underperformance of the latter model 
could be simply due to the difference in the percentiles used. The detection of the faulty and healthy transformers 
with Approach 2 is based on data from North America (IEEE, 2017).  In fact, the standard (IEEE, 2017) 
encourages the use of local data if available to calculate the reference values. 

In this work, the true labels used in training are not known but estimated with conventional approaches. 
Therefore, in future work, we aim to account for the uncertainty in the labels when training an ML model. The 
uncertainty in the measured DGA data will be considered in addition. 
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