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Structural Health Monitoring (SHM) has emerged as a pivotal technique for assessing damage in engineering 

structures, ensuring their safety, reliability, and serviceability. This technique is integral to identifying potential 
failures early, facilitating timely repair and maintenance actions. At the heart of SHM lies the challenge of 
damage identification, for which numerous methods have been proposed. Among these, the stochastic model 
updating-based approach stands out. It is celebrated for its capacity to bridge the gap between numerical 
simulations and experimental data, effectively handling the inherent uncertainties present in both (Farrar and 
Worden, 2007). 

This approach hinges on comparing the distributions of updated model parameters between intact and 
damaged models. Such comparisons are instrumental in damage identification, risk assessment, and failure 
prognostics. Central to solving the inverse problem in stochastic model updating is Bayesian inference. This 
method leverages prior knowledge (prior distribution) and observational data to obtain a posterior distribution of 
uncertain model parameters, thereby maximizing the likelihood function. The likelihood function quantifies the 
probability of observing the data for different parameter values, making it a cornerstone of this approach (Lam, 
Yang and Au, 2018). 

However, establishing the likelihood function poses significant challenges. It is often computationally 
demanding, owing to the need for high-dimensional integral calculations and the quantification of uncertainties. 
Additionally, the complexity of models can render analytical solutions infeasible (Bi et al., 2023). To address 
these issues, strategies such as approximate Bayesian computation (ABC) have been developed, including the use 
of a Bhattacharyya distance-based approximate likelihood function. Sampling methods like Markov Chain Monte 
Carlo (MCMC) and Transitional Markov Chain Monte Carlo (TMCMC) also play a crucial role. They allow for 
sampling from posterior distributions without directly computing the normalizing factor, a process integral to 

(Bi, Broggi and Beer, 2019). Despite these advancements, challenges remain. There is an over-
reliance on the precision of sampling methods, and the time-intensive nature of handling high-dimensional 
problems poses significant hurdles. These challenges can impede achieving the timeliness and accuracy required 
for effective SHM (Lye, Cicirello and Patelli, 2021). 

In response to the aforementioned challenges, this work integrates the BayesFlow framework, as developed by 
(Radev et al., 2022), offering a novel approach to circumvent the computational and analytical hurdles in SHM. 
BayesFlow stands out by enabling the simulation-based training of cutting-edge neural network architectures, 
including deep neural networks and normalizing flows, to facilitate amortized posterior inference effectively. The 
essence of BayesFlow's architecture, depicted in Figure 1 (a), is encapsulated in two primary neural networks: the 
summary network and the inference network. 

The summary network plays a critical role in condensing a variable-sized set of observations into a fixed-size 
vector of learned summary statistics. This process is crucial for handling the diverse and complex data typically 
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encountered in SHM. On the other hand, the inference network focuses on discerning the true posterior 
distribution of model parameters based on these summary statistics. This is achieved by implementing the 
network as a conditional invertible neural network, featuring multiple coupling layers designed to accurately 
predict the parameter distributions from observational data post-training. 

 

 

Fig. 1. (a) Architecture of BayesFlow; (b) 3-DOF spring-mass system; (c) Experimental rig case study. 

A key aspect of BayesFlow's methodology is the manual selection of the summary network by researchers. 
This allows for the autonomous learning of the most informative statistics from the raw data. Meanwhile, the 
inference network's execution through conditional invertible neural networks ensures precise modeling of the true 
distribution of model parameters. When trained jointly, these networks promise rapid and precise predictions, 
significantly enhancing the efficiency and reliability of damage identification in SHM systems (Zeng, Todd and 
Hu, 2023). 

This study harnesses the BayesFlow framework for stochastic model updating, applying it to the intricate task 
of damage identification. To evaluate the efficacy of the conditional Invertible Neural Network (cINN)-based 
method for stochastic damage detection, two distinct models were employed: a theoretical 3-DOF (degrees of 
freedom) spring-mass model, illustrated in Figure 1 (b), and a physical 3-DOF experimental rig (Isnardi, et al., 
2023), depicted in Figure 1 (c), each subjected to various damage scenarios. 

During the training phase, data is synthesized from a specified prior distribution and the simulation outputs of 
the model. This process ensures that BayesFlow is adeptly trained to perform inverse predictions, using 
observational data sequences to ascertain the true parameter distribution responsible for the observed damage. 
Damage scenarios are meticulously crafted to simulate varying degrees of stiffness reduction at specific locations 
within the models. This approach allows for a nuanced comparison of the posterior distributions of structural 
stiffness parameters in both damaged and undamaged states, facilitating not only damage identification but also 
localization and assessment. This is further enriched by calculating the probability of damage (POD), offering a 
quantitative measure of damage severity. 

Moreover, this study advances the application of multilevel Bayesian inference. Unlike traditional methods 
that directly update structural parameters, this approach focuses on the hyper-parameters of these structural 
entities. Consequently, the outcomes of model updating are expressed through the marginal posterior densities of 
the structural parameters, with particular interest in their means and standard deviations. This nuanced approach 
allows for a more refined understanding of the structural health, encapsulating the uncertainties inherent in both 
the model and observed data. 
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