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Recent advancements in Large Language Models (LLMs), exemplified by GPT-3.5, have demonstrated 

remarkable capabilities in understanding natural language and aiding humans in solving complex problems. One 
particularly successful application of LLMs is in the generation of code based on natural language descriptions of 
functionality. For instance, CodeBERT (Feng et al., 2020) achieved notable success by training on docstrings 
paired with functions, showcasing strong results in code search. PyMT5 (Clement et al., 2020) utilized the T5 
objective to create a system capable of translating non-overlapping subsets of function signatures, docstrings, and 
code bodies. 

In the domain of risk, resilience, and reliability, numerous tasks necessitate the implementation of computer 
code. Common examples include analyzing the reliability of complex systems through Monte Carlo or discrete 
event simulation and developing numerical methods to estimate parameters in statistical models for lifetime or 
degradation testing. Efficient application of code-generation tools to these tasks could significantly enhance the 
productivity of the risk, reliability, and resilience community. However, existing code generation models, as 
previously reviewed, are primarily tailored for generic software engineering applications and lack alignment with 
the specific vertical application of risk, reliability, and resilience. As a result, their performance within this 
domain is not assured and requires evaluation before widespread implementation. 

Various benchmark datasets have been proposed for evaluating the code-generation capabilities of AI models. 
Barone & Sennrich (2017) introduced a comprehensive dataset consisting of Python declarations, docstrings, and 
code bodies scraped from GitHub. The CodeSearchNet challenge (Husain et al., 2019) expanded upon this by 
compiling a larger corpus from GitHub, encompassing data from multiple popular programming languages. 
Notably, CodeXGLUE (Lu et al., 2021) aggregated diverse programming benchmarks, introducing the 
CodeBLEU metric (Ren et al., 2020). Two benchmark datasets for the synthesis of basic Python programs were 
introduced in (Austin et al., 2021): MBPP (Mostly Basic Programming Problems) consisting of problems that can 
be solved by entry-level programmers, and MathQA-Python, consisting of problems that require the generation of 
code from complex text. More recently, a novel benchmark, ClassEval, was introduced in (Du et al., 2023) for 
benchmarking LLMs on class-level code generation, which involves interdependencies between several code 
units. While relevant, these benchmarks primarily focus on generic programming tasks and lack specificity to 
risk, reliability, and resilience applications. 

In this paper, we address this gap by introducing a novel benchmark evaluation dataset, HumanEval-R3, 
designed to assess the capabilities of LLMs in generating code for risk, reliability, and resilience applications. 
Following the format of the HumanEval dataset (Chen et al., 2021), HumanEval-R3 features original, hand-
written programming problems specific to this application domain. Evaluation of LLM performance is conducted 
through functional correctness assessment, utilizing unit tests. A representative problem from the generated 
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HumanEval-R3 dataset is presented in Figure 1. The dataset will be publicly accessible on GitHub following the 
conclusion of the conference, fostering collaboration and further research in this specialized domain. 

 

 

Fig. 1. A sample problem from the HumanEval-R3 dataset. 
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