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Flood assessment relies on reliable rainfall data. One of the main sources of rainfall data is the rain gauge 

network. Therefore, an assessment of the current performance of rain gauge stations can help to make 
recommendations for improving the accuracy of rainfall monitoring. In this study, the performance of different 
stations is judged by investigating the uncertainty of the rain gauge network in the Landro basin, located in the 
north of Spain. 

Firstly, for the precipitation used in this study, a spatial interpolation method was utilized to combine rain 
gauge data with satellite data to obtain a spatially interpolated estimate of rainfall. This method allows the 
sparsely distributed but highly accurate rain gauge data to be fused with the closely spaced but less accurate 
satellite data to obtain a rainfall that is closer to the true rainfall. This method is now widely studied, (Sun et al., 
2000) used Kriging method to merge rain gauges with radar data for optimal unbiased estimation. And (Sadat-
Noori et al., 2013) obtained that the kriging with external drift method gives the most coherent results according 
to cross-validation. 

 

 

 

Cross-validation is one of the most commonly used resampling methods and an important tool in many 
practical applications of statistical learning processes. It can be used to estimate the test errors associated with a 
given statistical learning method in order to evaluate its performance or to select the appropriate level of 
flexibility. (Xu et al., 2018) compute the uncertainty of a new rain gauge network by the cross-validation method. 
This is also the principal method used nowadays to quantify the uncertainty of the network of rain gauge stations. 
(Marco et al., 2022) use cross-validation to test machine learning-based models used to predict flood risk. 
Whereas in this study firstly cross validation is utilized for error calculation then The Receiver Operating 
Characteristic (ROC) Curve is utilized for uncertainty study. 

In the cross-validation process, the data is divided into two parts, i.e., training set and validation set. As shown 
in Figure 1. The white dots are the validation set and the yellow dots are the test set. In this study, k-fold cross-
validation is used. The data is divided into k groups, one of which is set as the validation set and the remaining k-
1 groups are the training set. The training set is then used to perform calculations by substituting it into the model 
to obtain the data corresponding to the validation set. This in turn enables the calculation of the error between the 
validation set and the results obtained from the model training. This loop is repeated, using a different group as 
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Fig. 1. Schematic diagram of cross-validation. 



   

the validation set in each loop, until all the data has been validated. Thus, the error situation of the whole set of 
data in the model is obtained. 

The Receiver Operating Characteristic Curve (ROC) is an analytical tool for selecting the best detection signal 
(BOERO et al., 2009). It can give neutral and objective recommendations. The ROC curve is particularly 
valuable when dealing with binary classification problems, where the performance of a model in distinguishing 
between two classes needs to be thoroughly examined. (Rouhan and Schoefs, 2003) analyzed and made 
recommendations for the maintenance of coastal structures using ROC curves in their study In this study, the 
ROC curve is used to analyze the performance of the rainfall station in the same way it is used for other NDT 
performance assessment (Schoefs et al., 2009). The largest the error on a small signal, the worst will be the 
decision. The ROC curve is a curve based on the Probability of Detection (PoD) and probability of false alarm 
(PFA). The probability of detection is derived from the signal that is synthesized in the sensor as an aggregate 
value of rainfall and disturbance errors. And the probability of false alarm originates from the error. As shown in 
Figure 2, the plot shows the probability density curves for the error and the combination of error and rainfall with 
threshold equal to -2 and 0. Then different thresholds are selected and for different thresholds there is a 
corresponding area under the curve. These areas are the PoD and PFA. Therefore, by selecting different 
thresholds, a series of PoDs and PFAs can be obtained and the corresponding ROC curves can be obtained. And 
for a particular event, the most desirable state of the model is (PoD,PFA)=(1,0). The closer to this point indicates 
that the model performs better. Meanwhile, when (PoD,PFA)=(0.5,0.5), it indicates that the results of the model 
present a random state. The probability of detection is equal to the probability of false alarm, which is not 
favorable to the model. 

 
In this study, uncertainty was investigated by examining the rain gauge network consisting of ten rain gauge 

stations in the study area. The ten rain gauges were categorized into five groups for error calculation during the 
cross-validation phase. Then, the ROC images were plotted for five different storm events by taking the ten 
stations in the interval of thresholds -4 to 4. Finally, one of the stations was found to be underperforming and it is 
recommended that the monitoring capability should be strengthened here to provide a significant improvement in 
the detection capability of the rain gauge network. 
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Fig. 2. (a) threshold = -2; (b) threshold = 0. 
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