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Power transmission insulators are important components of the transmission system, which provide physical 

support to long transmission lines and prevent leakage of current to the ground through the tower (Kong and 
Yang, 2020). With cyclically changing daily environmental conditions, extreme weather conditions and the 
deposition of dust on the insulator, the quality of insulation decreases over time (Ramirez et al., 2012). Unhealthy 
insulators allow current to leak through the tower and result in loss of power during transmission. In extreme 
cases, neighbouring protection switches can be activated resulting in an interruption of power. The inspection of 
power transmission insulators and detection of leakage current are important tasks for power system operators 
(Werneck et al., 2014). A popular approach for fault detection is to create a model of the power line and 
synthetically introduce faults that simulate leakage of current. This approach allows the creation of a large 
synthetic dataset of healthy and faulty scenarios without having to wait to collect such data from the real-life 
system. However, such an approach also relies solely on synthetic data for training a fault detection model, and 
the validity of the resulting model cannot be evaluated in a real-life system. A recent study further showed that 
deep learning models trained with synthetic data for the detection of leakage current are sensitive to the physics-
based model parameters that are used to generate the synthetic data (Gjorgiev et al., 2022). However, a detailed 
analysis of the impact of the uncertainty in the data generation process and the randomness involved in the 
training of neural networks is not performed. 

Motivated by this gap in the literature, we present an uncertainty-aware training framework that explicitly 
accounts for the synthetic nature of the data, specifically the uncertainty associated with the data generation 
process at the time of training and evaluation. 

We adopt the following steps to train uncertainty-aware neural networks for fault detection from synthetic data. 
 Dataset preparation: A physics-based model simulates the healthy and faulty operating conditions of the 

system. Data collected from a healthy real-life power line in Switzerland is used to calibrate the physics-
based model with genetic algorithms. Since the amount of data is limited and the tuned parameters have 
uncertainty associated with them, ten instances of the physics-based model are obtained by starting with 
ten different initialisations and obtaining ten slightly different calibrated parameters. These equivalent 
models are used to generate an ensemble of healthy and faulty data that are used to train a fault detection 
model.  

 Uncertainty-aware training: Assumed density filtering (ADF) (Gast and Roth, 2018), a variational 
uncertainty propagation technique is used to train deep neural networks in an uncertainty-aware manner. 
This approach replaces each layer of a neural network with a variational counterpart that propagates the 
mean and variance of inputs, as opposed to only a sample for regular neural networks. Monte Carlo 
dropout (Gal and Ghahramani, 2016) is used to quantify the epistemic uncertainty. Here, a 
predetermined fraction of nodes in each layer are dropped out at random, i.e., their activations are set to 
zero  after the training is completed. The aleatoric and epistemic uncertainty are added to obtain the 
total prediction uncertainty.  
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 Neural network architectures: Three commonly used neural network architectures  fully connected (fc), 
one-dimensional convolutional (conv1d) and two-dimensional convolutional (conv2d) neural networks  
are used to train fault detection models. The fc and conv1d architectures are trained with raw time series 
of leakage current, while the conv2d architecture is trained with the spectrogram of leakage current. 
Data from the ten physics-based models is used to estimate the mean and variance to train neural 
networks with ADF.  

 Comparative analysis: Three comparative analyses are performed. The performance of deterministic and 
uncertainty-aware models is compared in terms of classification accuracy. The reliability of models is 
assessed via reliability diagrams. The generalizability of models is assessed by calculating the 
performance on data generated from physics-based models that were not used for training. The 
uncertainty in predictions of uncertainty-aware neural networks is presented.  

The accuracy of uncertainty-aware models is 1% to 19% better than deterministic models depending on the 
type of architecture. The reliability diagrams reveal that all models are under-confident in their predictions, which 
suggests that while the predictions cannot be interpreted as class probabilities, they can be relied upon to make 
downstream decisions. A comparison of the generalisability of models reveals that deterministic models exhibit 
an accuracy equal to a random guess when evaluated on data from physics-based models that were not used for 
training. Remarkably, the deterministic neural network models exhibit no transferability of features learnt from 
one physics-based model to another, and by extension, to the real-life system. They are not suitable for real-life 
deployment. Conversely, the uncertainty-aware models exhibit a drop in performance in the range [5%, 15%], 
delivering an accuracy of more than 80% on physics-based models that were not seen during training. This 
demonstrates the advantage of using uncertainty-aware deep learning to train reliable fault detection models with 
synthetic data. Figure 1 shows the density of aleatoric prediction uncertainty for the three architectures. The 
uncertainty increases sharply when the abnormality factor increases beyond 2, which represents the boundary 
between healthy and faulty data. This is an interesting result since the neural networks were not provided with the 
information of abnormality factor at the time of training, but their uncertainty depends on this quantity, which 
was used in the data generation process. These models are not only able to provide better performance and 
generalisability but also able to reflect properties of the data generation process in their predictions. 

 
Fig. 1. Aleatoric uncertainty (density plots) of uncertainty-aware models. The abnormality factor represents the presence and severity of faults 
(<2: healthy, >2: faulty, higher values represent more severe faults). The blue vertical line separates healthy data from faulty data. The black 

inclined line shows the dependence of aleatoric variance on the abnormality factor for faulty data points. adf: assumed density filtering. 
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