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In an era dominated by growing concerns over climate change, emerging decarbonization technologies are 

assuming a central role in shaping a more environmentally conscious future. Among these innovations, liquid 
hydrogen (LH2) has emerged as a promising zero-emission fuel with vast potential to transform many economic 
sectors (Qazi, 2022). While several industries are exploring how to include LH2 into their processes, the marine 
sector stands out as a vital domain for its uptake (Ustolin et al., 2022). However, as LH2 adoption gains 
momentum, it is crucial to stress the need of a thorough systemic risk and resilience assessment. Evaluating 
bunkering systems  ability to withstand challenges, adapt to evolving conditions, and ensure uninterrupted 
functionality is paramount in the context of risk assessment, where conventional approaches fall short in 
addressing the post-failure phase of complex systems. As such, in the current study a quantitative resilience 
evaluation of a LH2 bunkering system has been performed using Dynamic Bayesian Networks (DBNs). DBNs 
account for the dynamic and probabilistic features of resilience, in which the engineered system, human and 
organizational factors, and external disruptions are involved (Khakzad, 2015). 

The resilience metrics adopted to conduct the analysis is the one proposed by (Tong et al., 2020), that defines 
resilience as 

on of a system 
within a specific time To deeply understand this definition, details regarding resilience attributes and their 
conceptualization with respect to functionality are provided in the following. 

Basically, a resilient system has four attributes: absorption, adaptation, restoration, and learning. The innate 
capacity of a system to withstand and endure a disturbance is known as absorption. Adaptation is the system's 
capacity to adjust to a disturbed environment, regaining the lost functionality without the necessity of external 
restoration efforts. Restoration represents the ability of a system to support external actions to fix the damages 
caused by the disturbances and return to a new normal state, while learning consists in the ability of improving 
future system responses to disturbances thanks to past experience integration. Four functionality states (S1, S2, 
S3, and S4) are used to quantify resilience and the transition rates among the states are determined based on the 

n, adaptation, restoration, and learning abilities at each period following Markov Chain rules. 
Based on this, (Tong et al., 2020) developed a DBN model for describing the change of functionality state of a 
system under the influences of resilience attributes and disruptions. 

In the following, the DBN model is applied to a case study concerning LH2, to demonstrate its potentialities in 
supporting the implementation of resilience in LH2 bunkering operations. 
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The case study aims to quantitatively assess the resilience of a bunkering system based on the metrics outlined 
in Section 2. Figure 1 (a) shows the DBN developed with the GeNIe software (GeNIe Modeler, 2024) to perform 
the analysis. The main system disruption consists in the failure of the flexible hose used for the LH2 transfer and 
it is assumed as always occurring . Then, the safety barriers of the system are 
considered to define the influencing factors of the resilience attributes (Zinetullina et al., 2020). In this case, 
absorption and adaptation are influenced by the release prevention and detection barriers of the system, 
respectively. Instead, the factors affecting the restoration ability are equipment maintenance and replacement, 
preliminary measures, human reliability, and management culture. In the network, all root nodes entering the 

 Learning affects all the three 
attributes, and its state is defined as  as well. To define the Computational Probability Tables (CPTs) 
among parents and child nodes, all the impacting factors are considered with the same probability of altering the 
child nodes. 
 

   

Fig. 1. (a) The DBN model for bunkering resilience assessment (GeNIe Modeler, 2024); (b) The dynamic resilience curve. 

The DBN model was computed for 100 time steps, and the conditional probabilities for the four states of 
reliability were assigned in the from (Tong et al., 
2020). The dynamic resilience curve is then obtained by summing S1 and S4 probabilities, as stated in the 
definition of resilience; see Figure 1 (b). The resilience of the system varies over time until it stabilizes at about 
80 min with a new resilience of 98.5%. The rapid decline of the resilience at 12 min is associated with the 
disruption due to the LH2 leakage, and the further increase in resilience is due to 
restoration attempts. The learning capability of the system would contribute to increased absorption, adaptation, 
and restoration capabilities, facilitating the achievement of higher levels of system resilience. 

This work delves into the imperative of addressing resilience assessment, emphasizing the intricate 
intersection between climate change mitigation and the robustness of emerging technologies to strongly delineate 
a sustainable path for the maritime industry. The resilience profile obtained by the case study supports the 
estimation of bunkering thstand uncertain disruptions, monitoring their performance 
variation, assessing the effectiveness of safety measures, and identifying potential design and operational 
improvements. 
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