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Hydrogen technologies are positioned to play an important role in decarbonizing transportation to address 

global climate imperatives. However, widespread adoption of hydrogen fuel faces barriers, including the need to 
ensure reliability, availability, and safety of fueling stations. Unscheduled maintenance is more frequent and 
costly for hydrogen fueling infrastructure than for gasoline stations (Kurtz, Bradley and Gilleon 2024), and 
extended downtimes can lead to missed fueling opportunities and loss of consumers at a pivotal stage of 
technology deployment. Fuels involve safety risks that must be appropriately addressed to ensure broader public 
acceptance of fuel cell electric vehicles and hydrogen fueling infrastructure. To address these issues, we need 
innovative reliability and risk analysis methods to streamline hydrogen infrastructure management. 

Recent advances in digitalization and sensor technology continue to offer new chances to glean data-driven 
insights with respect to hydrogen system safety and reliability (Correa-Jullian and Groth 2022; Moradi and Groth 
2019). However, effectively using the large volume of data that results to feed decision-making remains a huge 
challenge, especially in complex engineering systems (Moradi and Groth 2020). To date, two major reliability 
engineering subfields, Quantitative or Probabilistic Risk Assessment (QRA or PRA) and Prognostics and Health 
Management (PHM), have demonstrated ability to use data to drive system reliability improvement (Lewis and 
Groth 2023). Each has distinct benefits but faces specific constraints. While PHM stands out for its ability to 
effectively manage large, multi-dimensional data and support predictive analysis, its application is mainly at the 
component level and is limited in system-level perspective. PRA, on the other hand, provides a holistic approach 
that can help integrate various data types to fully assess complex systems; nevertheless, limitations in applying 
advanced machine learning (ML) techniques and providing predictive capabilities (Moradi and Groth 2020).  

In this research, we are applying a novel framework known as SIPPRA the systematic integration of PHM 
and PRA for operational risk monitoring, for the first time, in a hydrogen infrastructure. Previously validated in 
non-hydrogen contexts including nuclear power and oil and gas (Lewis and Groth 2023; Moradi et al. 2022; 
Moradi et al. 2020), this approach systematically restructures and integrates PHM and PRA methodologies to 
combine their strengths and overcome individual limitations. We are currently gathering information about the 
hydrogen fueling stations under study, including operational and failure data, P&IDs, maintenance records, and 
insights into the system's functional logic. Our sources of information include industry-leading companies in the 
hydrogen sector and national laboratories based in the U.S. and Germany.  

Our analytical framework for this research is structured into two main parts: system-level and subsystem-level 

interdependencies among the various subsystems (Moradi and Groth 2020). In developing scenarios for system 
failures and conducting consequence analyses, this process integrates both component and system-level 
functionalities: encapsulating complex interactions among various hydrogen fueling station components located 
within the overarching system architecture. We rely on a number of methodologies when constructing this model 
including traditional PRA/QRA tools (e.g., fault trees and event trees) as well as more advanced probabilistic 
graphical models such as Bayesian networks, in lockstep with specific analysis objectives (Moradi et al. 2020). 
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For subsystem-level analysis, we will begin with collecting operational data, including digital monitoring data, 
and maintenance logs for each component. This extensive data collection lays the foundation for developing 
accurate component-level condition monitoring (CM) models, with our study using ML models for handling 
multidimensional data and ability to operate even in the absence of detailed information about physics of the 
problem (Moradi and Groth 2020). The development of these models involves making critical decisions about 
various hyperparameters such as model structure and learning parameters and they are then applied to assess 
component performance in real time. We will also develop a Bayesian process for periodic model updates using 
new data, given the dynamic nature of components and conditions means parameters are not static throughout the 
life of the system or the model.  

At the final stage, we determine the overall state of the fueling station by analyzing the condition of each 
individual subsystem, with an estimate then made regarding system operational life based on a combination of 
these assessments. If the system displays faults, our model enables us to identify potential root causes, assess the 
severity, and understand the likely propagation of the fault throughout the system via forward-backward inference 
through the logic model (Moradi et al., 2022). Continually monitoring the operation of the entire system allows 
us to assess and predict its operational risk, and we can do so by considering all subsystem-level assessments as 
well as their interactions represented in the logic model. 

The success of our SIPPRA framework, however, depends on the availability of a proper reliability data 
format to feed our algorithms. This can be achieved in part by the hydrogen component reliability database 
(HyCReD) (Groth et al., 2024). HyCReD offers a structured format for component reliability data which can play 
a key role in our current hydrogen safety research. Our initial steps involve leveraging HyCReD to optimize 
SIPPRA data input, therefore, we plan to develop algorithms that can process raw data from the control systems 
and maintenance logs of hydrogen refueling stations converting them into the HyCReD format.  

In conclusion, our research is the first to draw together two distinct well-known reliability techniques to 
monitor hydrogen fueling station risks. Our approach allows for the simultaneous application of data-driven PRA 
and risk-informed PHM to support decision (Moradi et al., 2020). The proposed architecture has already shown 
its effectiveness in various real-world non-hydrogen systems. This research now aims to adapt SIPPRA to 
hydrogen systems which are marked by a range of specific features and challenges. This includes distinctive 
chemical and physical properties, infrastructure requirements, and advanced technologies, which contribute to 
unique failure modes, operational dynamics, and safety considerations (Ahad et al., 2023). Thanks to the unique 
datasets provided by our collaborators from hydrogen industry, we are conducting research to assess the viability 
of the proposed framework in hydrogen systems (Moradi et al., 2020). Finally, if we succeed, this versatile 
architecture will be the first step toward more widespread implementation of systematically integrated PHM and 
PRA algorithms across diverse systems and provide important capabilities for hydrogen fueling infrastructure 
management. This supports our broader objective of advancing hydrogen energy systems and points to the key 
role that innovative reliability approaches such as SIPPRA can play in developing the sustainable energy future. 
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