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Abstract 

Although maritime accidents have occurred from time to time, the risk of accidents varies among different waters. This  
study aims to explore the causation mechanism of maritime accidents in different waters by identifying the key risk 
influential factors (RIFs) of maritime accidents in different waters and analyzing the intricate relationships among them 
through the Combined-Association rules and Decision-Making Trial and Evaluation Laboratory (DEMATEL) model.  
Firstly, 34 RIFs in 5 categories are identified based on the literature review and analysis of marine accident investigation 
report. Secondly, the maritime accident datasets are classified into 4 categories according to the locations of the accidents 
which include inland waters, ports, coastal waters and open waters. Thirdly, the relationships among RIFs are explored  
by combined-AR and displayed by a direct influence matrix, and the matrix is then normalized by DEMATEL  
and a comprehensive influence matrix is obtained. Finally, the influence degree, affected degree, centrality degree, reason 
degree, and weights of each RIF are calculated to determine the extent to which it holds a causal or consequential position in 
the complex system. The results indicate that among the 34 RIFs, lack of experience, operational errors in human-related 
factors, and gross tonnage in ship-related factors have a significant direct impact on maritime accidents in all water areas. 
However, the key RIFs for maritime accidents in different waters vary a lot. Ship manning has the highest impact on 
accidents in inland waters and ports, while physical and psychological state and education background are key RIFs for 
accidents in coastal waters and open waters respectively. Based on the RIFs identified in this study, the evolutionary 
mechanism of maritime accidents in different waters and the relationships among these RIFs are analyzed, and key RIFs for 
maritime accidents in different waters are obtained, which is expected to be beneficial for the improvement of maritime 
safety in different waters. 
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1. Introduction 

In recent years, concerns persist over the frequent occurrence of maritime accidents with the continuous 
development of the shipping industry and the expanding global trade (Ugurlu and Cicek, 2022). Therefore, in-
depth research and analysis of maritime accidents are crucial for seeking effective preventive and responsive 
measures to maintain maritime safety (Ahmed et al., 2023). Although various measures have been adopted in the 
maritime transportation sector to enhance safety, accidents continue to occur frequently, and there has been no 
significant improvement in the safety situation. The rapid growth of the global shipping industry at the present 
stage has led to a swift increase in the scale of operational vessels. This has resulted in a growing significance of 
navigational order issues, coupled with an increasingly complex array of waterway types globally. The 
complexity and diversity of maritime accidents continue to present a challenging problem in identifying and 
preventing the root causes (Fan et al., 2020; Weng et al., 2020). 
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Maritime accidents are influenced by a multitude of factors, and these factors are interconnected. Currently, 
scholars in the industry employ various models to quantitatively study the changing trends of maritime accidents. 

 employed the Analytic Network Process (ANP) method to comprehensively 
assess the mutual influence among maritime accident factors, thereby determining the significance of human 
factors. Additionally, Awal and Hasegawa (2017) utilized Logic Programming Technology (LPT) to analyze and 
comprehend the causation of accidents. Moreover, Puisa et al. (2018) employed the System-Theoretic Accident 
Model and Processes (STAMP) along with its causal analysis method, CAST, to analyze the weakest links in 
maritime safety control, providing an analysis of the causal factors in accident reports. Furthermore, Chin and 
Debnath (2009) utilized an ordered probit regression model to predict ship collision risks and subsequently 
calibrates the regression model. In summary, existing research, while having practical implications for 
safeguarding maritime traffic and enhancing the level of maritime traffic safety management, its limitations lie in 
the fact that existing research methods have not thoroughly investigated the interrelationships among causal 
factors. 

Two methods, namely Combined-Association rules and Decision-Making Trial and Evaluation Laboratory 
(DEMATEL), are applied comprehensively to analyze various maritime accidents in different waters and 
accurately evaluate the relationship between RIFs. Firstly, 34 RIFs in 5 categories, that is human, ship, 
management, environment and basic accident information, are identified based on the literature review and 
accident investigation report analysis. Secondly, the maritime accident datasets are classified into 4 categories 
according to the locations of the accidents which include inland waters, ports, coastal waters and open waters. 
Thirdly, the relationships among RIFs are explored by combined-AR and displayed by a direct influence matrix, 
and the matrix is then normalized by DEMATEL and a comprehensive influence matrix is obtained. Finally, the 
influence degree, affected degree, centrality degree, reason degree, and weights of each RIF are calculated to 
determine the extent to which it holds a causal or consequential position in the complex system. The research 
findings can provide support for relevant authorities in formulating policies for the prevention of maritime 
accidents. 

2. Materials and method 

2.1. Data set 

In this study, maritime accident investigation reports published by seven maritime investigation agencies from 
2000 to 2019, namely China Maritime Safety (China MSA), Federal Bureau of Maritime Casualty Investigation 
(BSU), National Transportation Safety Board (NTSB), Japan Transportation Safety Board (JTSB), Australian 
Transport Safety Board (ATSB), Canadian Transportation Safety Board (TSB), and Marine Accident 
Investigation Branch (MAIB), were collected as the primary data source.  

Before analyzing the  investigation reports, it was observed that these accident investigation reports vary  
in degree of detail and even some of the data is inaccurate and/or incomplete. Therefore, adhering to  
the principles of data authenticity and completeness, accident reports with incomplete data were excluded,  
and a dataset of 1294 accident reports was obtained. As this study focuses on the causation analysis of  
maritime accidents in different water areas, all accident investigation reports were further categorized based on 
the types of water areas where the accidents occurred. This process resulted in a final breakdown of maritime 
accident data, with 154 accidents in inland waters, 523 in ports, 503 in coastal areas, and 114 in open waters. 
Based on the identification of RIFs through text analysis and expert judgment with reference to relevant 
literatures (Wang et al., 2021; Wang et al., 2022), this study established a database of the RIFs of maritime 
accidents so as to meet the data requirements for association rule mining (Toivonen, 1996). The database 
includes 34 RIFs across five dimensions: human, vessel, management, environment, and basic accident 
information, as shown in Table 1. 

 
 
 
 
 
 
 
 



   

Table 1. RIFs of maritime accidents. 

Category Second category Codes RIFs 

Accident 

Accident type and severity 
AT 

S 

Accident type 

Accident severity 

Date and time 
M Month 

T Time 

Human Human factors 

PP 

E 

Physical and psychological state 

Education background 

TS Time at sea 

TR Time in present rank 

C Communication problem 

OE Operational error 

VO Violation operation 

Ship 
Ship particulars 

ST 

SA 

Ship type 

Age 

G Gross tonnage 

EP Engine power 

F Flag state 

Voyage data SM Ship manning 

Environment 

External environment 

V Visibility 

WF Wind force 

SS Sea state 

CS Current speed 

Navigational/geographical condition 

TD Traffic density 

WL Fairway width/Ship length 

DD Depth-draft ratio (h/d) 

Management 

Administration 

R Regulation 

SUP Supervision 

VS 

PF 

Violation in supervision 

PSC/FSC 

Company factors 

SAS Safety system 

SAM Safety management 

RP Rectification of problems 

CC Company safety culture 

TRA Training 

D Drill 

2.2. Proposed methodological approach 

2.2.1 Combined-AR 

 one of the core of data mining technology, association rule mining can discover the potentially valuable 
relationships like co-occurrence, causation and correlation among item sets from complex chaotic datasets 
(Kotsiantis and Kanellopoulos, 2006). The associations unearthed through association rule mining can serve as 
substitutes for expert ratings, thereby eliminating the influence of subjective factors (Zaki and Ogihara, 2007). 
The formulae for the association rules are shown in equations (1) to (3). 

( ) AN
Support A

N
        (1) 

( )( )
( )

Support ABConfidence A B
Support B

        (2) 



   

( )( )
( )

Confidence A BLift A B
Support B

        (3) 

In these equations, ( )Support A represents the support of item set A; AN denotes the frequency of item set A  
occurs in the data; and N represents the total number of data instances; ( )Confidence A B signifies the 
confidence of item set A  leading to item set B , with item set A  as the antecedent and item set B  as the 
consequent; ( )Lift A B denotes the lift of item set A  to item set B , indicating the extent to which the 
probability of B occurring is elevated when A occurs. 

Support indicates the frequency of occurrence of an item set. Confidence represents the probability of the 
consequent occurring when the antecedent is present. Lift reflects the enhancing effect of the antecedent's 
occurrence on the probability of the consequent occurring. If the lift is greater than 1, it signifies that the 
presence of the antecedent promotes the occurrence of the consequent. Many researchers consider association 
rules with a lift greater than 1 as effective(Agrawal and Srikant, 1998). Confidence indicates the degree of 
influence that the antecedent has on the consequent; a higher confidence value implies a stronger impact. 
Therefore, in this study, association rules with a lift greater than 1 are selected as effective, and the confidence 
value is used to replace expert ratings. 

When mining the data with various states such as ship type and ship age, the traditional association rule 
mining techniques can only analyze the different states of each factor, but can not obtain the overall association 
relationships with other factors (Srikant and Agrawal, 1997). To address this limitation, this study introduces the 
Combined-AR algorithm, which is built upon traditional association rule mining. The formula and pseudocode 
of the Combined-AR are respectively presented in (4) and Table 2. 

( )
( ) ( )

( )
i j

i j
i j i j

i j

Support a b
Confidence A B Confidence a b

Support a b
        (4) 

where, ia denotes the different states of factor A , jb represents the distinct states of factor B , and 
( )i jSupport a b  signifies the support from the various states of factor A  to the different states of factor B . 

Table 2. The pseudocode of Combined-AR algorithm. 

Algorithm 1: Combined-Association Rule algorithm 

Input: Dataset, DS; Minimum support threshold, min_sup 

Output: Combined_AR 

1 Begin 

2 Calling Association Rule algorithm (Apriori, FP-Growth, etc.) 

3 Return association rules that satisfy min_sup and lift > 1, AR 

4 Generate two matrices CM and SM with ( )i iConviction a b and ( )i jSupport a b as elements, respectively, 
based on the AR 

5 Use (5) to perform scaling nodes operations are performed on CM and SM based on factors states to form new 
matrices, NCM 

6 Change the diagonal of NCM to all Zeros, CARM 

7 Transforming CARM matrix into association rule format 

8 Return Combined_AR 

9 End 

2.2.2. DEMATEL 

The occurrence of maritime accidents is not purely incidental but rather the result of the combined effects of 
various factors (Cao et al., 2023). The interaction among RIFs in maritime accidents constitutes a complex 
system. Analyzing the dependencies and causal relationships among the core elements of the complex system 
can be effectively achieved through the DEMATEL method (Si et al., 2018). The traditional DEMATEL 
approach involves an expert team to assist in determining the degree of influence between factors, facilitating a 
deeper understanding of the analyzed problem. However, the validity of expert opinions and the setting of 
weights are crucial considerations. To eliminate subjective factors, this study employs a purely data-driven 
approach to construct the DEMATEL model (Feldmann et al., 2022).  

 



   

The specific process of this method is outlined as follows: 
Step 1  Construct the Direct Impact Matrix based on Combined-AR  as presented in equations (5) to (7). 

        (5) 

( )AB ABg e Conviction A B         (6) 

1,
0,AB

 w  a combined association rule exists from A to Be  else
hen         (7) 

where, G stands for the Direct Impact Matrix; iFa represents a particular RIF under analysis in this study; ABg  
denotes the impact level of factor A  on factor B , ABe  indicates the presence of a strong correlation between 
factor A and factor B , with 1 denoting a strong correlation and 0 denoting otherwise. 

Step 2: Normalize the Direct Impact Matrix and obtain the Normalized Impact Matrix, as shown in equations 
(8) to (11). 

       (8) 

i ij
j

a g         (9) 

i ji
j

b g       (10) 

NorG Para G        (11) 

where, Para  is the normalization parameter; ia  denotes the summation directly influencing the i th row of the 
matrix, ib  represents the summation directly influencing the i th column of the matrix; NorG  signifies the 
normalized impact matrix. 

Step 3: Construct the comprehensive impact matrix using the theory of transitivity of influence, as shown  
in (12): 

1

1
( ) ( )k

ij e e
k

T NorG NorG E NorG t       (12) 

where, T  stands for the comprehensive impact matrix;  is indicative of the matrix product; E  represents the 
identity matrix; and ijt  signifies the overall impact of factor i  on factor j  within the comprehensive impact 
matrix. It is crucial to emphasize that (13) holds under the precondition that all elements in the matrix fall within 
the [0, 1] range, and the diagonal elements of the matrix are uniformly set to 0, implying that factors do not exert 
influence on themselves. 

Step 4: Calculate the influence degree, affected degree, centrality degree, reason degree and weight of each 
factor according to the comprehensive impact matrix, as shown in equations (13) to (17). 

i ij
j

I t       (13) 

i ji
j

BI t       (14) 

i i iCE I BI       (15) 

i i iRE I BI       (16) 
2 2 1/2

2 2 1/2

( )
( )

i i
i

i i
i

CE RE
Weight

CE RE
      (17) 



   

where, iI  stands for the influence degree of factor i ; iBI  represents the influenced degree of factor i ; iCE  
signifies the centrality of factor i ; iRE  indicates the causality of factor i ; and iWeight  represents the weight  
of factor i . 

3. Analysis and discussion 

3.1. Analysis of Combined-AR results 

To explore the potential relationships among various RIFs, 2082 original association rules and 824 joint 
association rules were mined in this study by the Apriori algorithm (Zhou et al., 2019). The confidence level 
serves as an indicator of the association rules' strength, the higher the confidence ranking is, the stronger the 
interaction between adjacent RIFs in the complex network is. The top 10 association rules with the highest 
confidence levels for maritime accident causation in the four types of water areas are shown in Table 3. 

It can be seen from Table 3 that the top-ranking association rules in any water areas are almost related to 
human factors and management factors. In inland waters, the interaction between operational errors, port state 
control inspections and other ship-related factors are strongest in the network. In ports, coastal waters and open 
waters, there is strong associations between inadequate crew communication and inadequate crew education and 
training, as well as lack of routine training and lack of onboard experience. 

On the whole, the RIF C (Communication problem) is most likely to occur in maritime accidents. However, 
there are some differences in other factors closely associated with factor C for accidents in different water areas. 

psychological states. In coastal waters, the factors RIF C most are PSC/FSC inspections and current speed. In 
open waters, the factors with the strongest interaction with factor C are crew education background and ship 
manning. Therefore, these factors should be distinctly emphasized and judiciously controlled in different water 
areas. 

Table 3 Top 10 Combined-AR ranked by confidence values. 

Areas No. Antecedent Consequent Confidence No. Antecedent Consequent Confidence 

Inland 
waters 

1 TS PF 0.98634 6 OE SAM 0.96154 

2 C PP 0.98276 7 OE D 0.96047 

3 OE F 0.97201 8 DD PP 0.96000 

4 OE PF 0.97196 9 SS PF 0.95833 

5 OE R 0.96321 10 VS TD 0.95826 

Ports 

1 ST C 0.98335 6 AT C 0.97631 

2 PP C 0.98268 7 DD C 0.97464 

3 E C 0.97949 8 SAS C 0.97453 

4 TS C 0.97828 9 F C 0.97345 

5 TR C 0.97702 10 CC C 0.97322 

Coastal 
areas 

1 PF C 0.96444 6 TS C 0.96050 

2 CS C 0.96335 7 PP C 0.95930 

3 SM C 0.96214 8 TR C 0.95683 

4 R C 0.96184 9 VS C 0.95658 

5 E C 0.96128 10 SAS C 0.95430 

Open 
waters 

1 E C 0.98357 6 TS C 0.98087 

2 SM C 0.98210 7 SS C 0.98083 

3 TR C 0.98188 8 PP C 0.98081 

4 CS C 0.98157 9 WF C 0.98035 

5 R C 0.98156 10 AT C 0.98009 

 

 



   

3.2. Causality analysis of RIFs based on DEMATEL 

In this study, the Direct Impact Matrix G  for each water area was constructed according to, equations (5) to 
(7). The Direct Impact Matrices were then normalized using equations (8) to (11), the normalized matrices 
NorG  where all elements fall within the [0, 1] range were obtained. The Comprehensive Impact Matrix T  was 
then obtained by (12). Finally, the influence degree I , affected degree BI , centrality degree CE , causality 
degree RE , as well as weights Weight of the RIFs of maritime accidents in each water area were calculated 
using equations (13) to (17). A causal distribution graph of RIFs was illustrated by plotting the values of 
centrality and causality in Table 4, as shown in Figure 1.  

 

 
Fig. 1. The Weight Distribution Graph of Maritime Accident Impact Factors. 

The centrality degree (CE) value serves as an indicator of a factor's influence on the overall complex system, 
and the greater the CE value, the more significant the influence of the factor on maritime accidents. As illustrated 
in Figure 2, the top 5 factors that have the most significant impact on maritime accidents in inland waters are SM 
(Ship Manning), R (Regulation), VS (Violation in Supervision), PF (PSC/FSC), and E (Education Background). 
Their centrality degrees are 3.9996, 3.9095, 3.8363, 3.7820, and 3.7226, respectively. In port waters, the leading 
factors influencing maritime accidents are SM (Ship Manning), E (Education Background), R (Regulation), C 
(Communication Problem), and PP (Physical and Psychological State), with centrality degrees of 3.9147, 3.7013, 
3.6852, 3.6458, and 3.6116. For maritime accidents in coastal waters, the five most RIFs are SM (Ship Manning), 
C (Communication Problem), R (Regulation), E (Education Background), and PF (PSC/FSC), with centrality 
degrees of 4.1074, 4.0318, 4.0161, 3.9248, and 3.7669, respectively. In open waters, the factors with the most 
substantial impact on maritime accidents are C (Communication Problem), R (Regulation), E (Education 
Background), SM (Ship Manning), and PP (Physical and Psychological State), with centrality degrees of 4.1600, 
3.9457, 3.9441, 3.8278, and 3.8125, respectively. These RIFs are closely related to other factors in maritime 
accidents, so it is necessary to carry out more detailed risk management approaches for vessels navigating in 
different water areas. 

The causality degree (RE) value reflects the degree to which a factor occupies a causal position within a 
complex system. If RE > 0, it indicates that the factor is a causative influence on other factors. Conversely, if  
RE < 0, the factor is influenced by other factors and serves as a resultant factor. It can be seen from Table 4 and 
Figure 1 that, the causality degrees (RE) of RIFs M (Month), ST (Ship Type), AT (Accident Type) and T (Time) 
all exceed 1 for maritime accidents in three distinct water areas inland waters, ports, and coastal waters, which 
indicates that these factors have the most significant influence on other elements. Meanwhile, the factors with 
the smallest causality degrees are C (Communication Problem) and SM (Ship Manning). The causality values of 



   

both factors are less than -1, indicating their susceptibility to the influence of other elements within the complex 
system. Similarly, in open waters, the leading four factors with the highest causality degrees are M (Month), AT 
(Accident Type), ST (Ship Type), and T (Time), underscoring their substantial impact on other elements. The 
factors with the smallest causality degrees are C (Communication Problem) and E (Education Background), 
revealing their vulnerability to the influence of other factors. 

 

 
Fig. 2. The Weight Distribution Graph of Maritime Accident Impact Factors. 

A comprehensive analysis of centrality degree (CE) and causality degree (RE) brings to light distinctive 
features within the RIFs of maritime accidents across various maritime areas. It is particularly noteworthy that 
the factor C (Communication Problem) has the highest centrality degree (CE) and the smallest causality degree 
(RE) in maritime accidents in inland waters. Similarly, the factor SM in port waters, factor PF in coastal waters, 
and factor E in open waters have the same characteristics. This suggests that these factors are significantly 
influenced by other factors, but have a relatively minor impact on other factors, highlighting their close 
relationship with other factors in the complex system and their direct influence on maritime accidents. Relatively 
speaking, the centrality and causality degrees of factors M (Month), ST (Ship Type) and AT (Accident Type) are 
relatively large, indicating that these factors indirectly affect maritime accidents by influencing other factors. 

In the complex system governing the evolution of maritime accidents, Figure 2 visually illustrates the weight 
distribution of RIFs based on the Weight values in Table 4. Notably, in the complex system, the top five weight 
ranking for RIFs of maritime accidents in inland waters are SM (Ship Manning), R (Regulation), C 
(Communication Problem), VS (Violation in Supervision), and PF (PSC/FSC). In coastal waters, these factors 
are SM (Ship Manning), C (Communication Problem), E (Education background), R (Regulation), and PP 
(Physical and psychological state); for port waters, SM (Ship Manning), C (Communication Problem), R 
(Regulation), E (Education background), and PF (PSC/FSC); and in open waters, the factors are C 
(Communication Problem), E (Education background), R (Regulation), SM (Ship Manning), and PP (Physical 
and psychological state). The weight takes into account the attributes of centrality and causality, but downplays 
the influence of resultant and causative factors. 

 



   

Through a comprehensive analysis of centrality, causality and weight of the RIFs of maritime accidents in 
four types of water areas, it is found that in any water area, ship manning, communication, and regulations are 
the most RIFs in maritime accidents. In addition, there are differences in the key RIFs for different water areas: 
in inland waters, Violation in Supervision is notably important; in port waters, the key RIFs include port-state 
inspections and flag-state inspections; whereas in coastal waters and open waters, physical and psychological 
state and education background surface as fundamental RIFs. 

4. Conclusion 

In this study, an integrated approach that combines Combined-Association rules and the DEMATEL model 
was proposed to analyze the key RIFs and their intricate relationships in maritime accidents. The results reveal 
that the degrees of direct impact exerted by human and vessel factors vary on maritime accidents in different 
waters. Insufficient experience and operational errors are the most important human factors that affect the 
maritime accidents in any water areas, while the gross tonnage of the ship plays a pivotal and direct role among 
ship-related factors. In addition, there are differenc s in the key RIFs in different waters. Notably, in inland 
waterways and ports, crew-related factors bear greater significance, while in coastal and open waters, 
psychological state and educational background stand out as fundamental factors. 

Through a comprehensive analysis of the interrelationships among factors influencing maritime accidents, 
this study successfully elucidates the evolutionary mechanisms of these factors, providing a profound 
understanding of their dynamic developmental processes. Specific cause-and-effect relationships of maritime 
accident RIFs are delineated, offering crucial theoretical support for a deeper comprehension and intervention 
into maritime accidents. The research opens new avenues for enhancing vessel traffic safety in different 
waterways and provides theoretical guidance for formulating more effective safety management strategies. In 
practical terms, it offers valuable insights for effectively reducing the risk of maritime accidents and 
substantively contributes to accident avoidance. 

This study, however, has certain limitations and shortcomings, which need further attention in future research: 
The analysis of maritime accident RIFs in this study is limited to four types of sea areas with a higher occurrence 
of accidents. The classification of water areas is relatively general, and future research could benefit from a more 
refined analysis of maritime accident RIFs for different types of water areas. The study primarily focuses on 
analyzing the differences in RIFs for maritime accidents occurring in different sea areas, without delving into the 
coupling effects between different states of the same factor. It is recommended that future research consider 
exploring such interactions to advance maritime safety and sustainable shipping development. 

Appendix 

Acronym Full name Acronym Full name 
DEMATEL Decision-Making Trial and Evaluation Laboratory T Comprehensive Impact Matrix 

Combined-AR Combined Association Rules I Influence degree 
RIF Risk influential factors BI Affected degree 

STAMP Systems-Theoretic Accident Modeland Process CE centrality degree 
CAST Causal Analysis based on STAMP RE causality degree 
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