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Abstract 

Bayesian Networks (BNs) have emerged as a widely embraced tool for high-dimensional probabilistic models. Their appeal 
lies in the intuitive graphical representation, which effectively captures engineers' understanding of complex systems. These 
models excel in delineating the subtleties of complex and dynamic realities, thanks to their intuitive visual representation. 
Supported by robust theoretical underpinnings and streamlined, user-friendly computational implementations, BNs offer 
impressive capabilities. Their popularity stems from their adaptability to data-rich applications and seamless integration of 
expert input.  Among the others, BNs have found extensive applications in safety and reliability analyses. This paper 
showcases instances of BN applications in safety analysis, directs readers to authoritative overview articles on their 
applications in reliability, and outlines the latest advancements in copula-based BNs. 
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1. Bayesian Networks (BNs) 

The qualitative part of a BN is represented by a directed acyclic graph (DAG), G = (V, E), with nodes  
V ={ } and  directed edges (arcs)  E. Any sequence of arcs  is called a path from node  
to node in G. The graph G is called a acyclic if it does not contain a path that starts and ends at the same node. 
For each edge   in E, the node v is said to be the parent of w and w is said to be child of v. Moreover, we 
denote as pa(v) ( ch(v) ) the set of parents (children) of v. Since G is a directed acyclic graph, its nodes can be 
ordered such that parents appear earlier in the order then the children. A simple DAG with three nodes is shown 
in Fig. 1b. Node T  has two parents X and Y, hence pa(T) = {X,Y}. T has no children, hence ch(T) is empty.  

The nodes in V correspond to random variables . We assume that if two nodes are connected by an 
arc then the corresponding variables are directly related; and if there is no arc between two nodes vi and vj and  vi 
is earlier in the ordering of nodes than vj, then corresponding variables Xi and  Xj are conditionally independent 
given variables corresponding to all parents of node vj  (Pearl, 1988; Lauritzen,1996; Koller and Friedman, 
2009). The quantitative part of BN models is composed of the conditional distributions of each node given its 
parents. Then the joint distribution of  is equal to the product of these conditional distributions. 

 (1)  

If all random variables   are discrete then the product of conditional probability tables on the right hand 
side of  (1) gives us the joint probability mass function of . These BNs are called discrete BNs.  

Bayesian Networks (BNs) serve as versatile generalizations of various models that have proven effective in 
the domains of safety and reliability. For instance, they can encompass fault tree (FT) models which excel at 
modeling complex engineering structures and are renowned for their proficiency in depicting failure occurrences 
within such systems. However, it is evident that because FTs rely on basic, intermediate, and top events with 
only two states, representing binary functions, they exhibit limitations when it comes to describing factors like 
human contributions to failures in engineering systems. BNs offer the possibility of modeling discrete variables 
with many states or continuous variables with versatile dependence structures.  Even though BN s representation 
of FTs may be less visually intuitive and entail greater computational and memory resources, they can 
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accommodate more flexible relationships between these variables beyond "AND" and "OR" gates. In Figure 1 a 
simple FT model and its BN representation is shown. 
 

         
Fig. 1. (a) FT; (b) BN graph structure, corresponding to FT.   

 
Bayesian Networks have gained widespread popularity as a powerful tool for conducting reasoning under 

uncertainty, due to their ability to be conditioned on available evidence. Consequently, in the model presented in 
Figure 1, one can explore the likelihood of event T occurring given that X equals 1 (indicating a failure), or 
observe how the probabilities of failure of both X and Y shift in case of the event of T'  failure.  

BNs can model the relationships between various components in a system and their failure modes as well as 
the dependency between repair times. This is useful in diagnosing faults and predicting future system behaviour. 
They can be used to model dependencies between different components in a supply chain, including suppliers, 
transportation modes, and warehouses, hence can help in optimizing the reliability of the supply chain. BNs are 
particularly suitable for modelling complex systems' reliability and availability.  

BNs are mostly applied to model dependencies for discrete distributions due to the available powerful 
computational algorithms and numerous computer implementations. Extensive review can be found in (Weber 
et. al. 2010) and (Cai et al., 2019) where additional references are included. Moreover, discrete BNs have been 
applied in (Wooff et al., 2018) to software testing. BNs have been successfully extended and widely applied for 
the dynamic case. To represent continuous data, the following approaches are adopted: direct models (Gaussian 
and conditional Gaussian), models based on discretization and copula-based models. In this paper we 
concentrate on the discrete and the copula-based BNs.  

1.1. Discrete BN in occupation safety 

In this section, we present an example of a discrete Bayesian Network (BN) model developed as part of a 
project commissioned by the Ministry of Social Affairs and Employment in the Netherlands. The aim of this 
project was to assess and potentially mitigate risks for workers. Originally, the model representing a ladder 
accident was depicted using a 'bowtie' diagram. The central event, a fall from a placed ladder (F), is defined as a 
fall resulting in either fatal or serious physical and/or mental injury, leading to hospitalization or observation 
within 24 hours, along with suspicion of permanent physical or mental impairment. This fall can be attributed to 
the failure of one of the primary safety barriers (PSBs): Ladder Strength (SR), Ladder Stability (SL), and User 
Stability (SU). It is assumed that the failure of any one PSB is sufficient to lead to the fall. These PSBs are 
influenced by support safety barriers (SSBs): Placement and Protection (PP), Right Ladder (RL), and Ability 
(AB). The SSBs can be influenced by Management. 

On the right-hand side of the Placement Ladder BN, there are three nodes influencing the consequences (C) of 
the fall, namely, Height (H), Medical attention (M), and Age of the victim (A). The majority of nodes in this BN 
have discrete states, with only the 'Age' of the victim and the 'Height' of the fall that can be modeled as 
continuous variables. However, in the project, they were discretized due to insufficient data as shown in Figure 2 
(implemented in Netica software). The model's assumptions, along with the corresponding data, were adequate 
for quantifying this discrete BN. These included: 

 the probability of support safety barriers given the loss of one of the primary safety barriers and 
subsequent fall; 

 the probability of the loss of one of the primary safety barriers given a fall; 
 the probability of a fall; 
 the unconditional probability of various combinations of support safety barriers. 

The first two probabilities, as well as the number of accidents required to determine the probability of a fall, 
were derived from available data. However, the exposure necessary to calculate the probability of a fall and the 
unconditional probability of support barriers had to be obtained through structured expert judgment (Cooke, 
1991), as detailed in (Kurowicka et al., 2008). The quantification of the right-hand side of the model was based 
on empirical data. 
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Fig. 2. Placement Ladder BN conditionalized on the event of fall. 
 

This model enables us to explore, for instance, the impact of different management types on the likelihood of 
a fall from a ladder, as well as to forecast the resulting consequences. Similar models have been developed 
within this project to depict various other types of occupational accidents. 

1.2. Gaussian and linear Gaussian BNs  

In case  are absolutely continuous then their joint density in (1) is the product of the conditional 
densities and different types of such densities can in principle be chosen. The most popular are Gaussian BNs, 
where the conditional density of each node is Gaussian with means that are linear functions of parents and 
constant variances. Such representation of BNs is equivalent with the specification of the joint Gaussian 
distribution of variables corresponding to nodes of the DAG; see e.g. (Koler and Friedman, 2009).  

Another extension of BN is so called Conditional Gaussian BNs, that allow discrete and continuous variables; 
see e.g. (Koler and Friedman, 2009). A recent application of linear Gaussian BNs to tank corrosion problem is 
presented in (Portinale, 2023) and to fault diagnosis in (Lou et al., 2020).   

2. Copula-based BNs 

The restrictions of Gaussian and Conditional Gaussian BNs can be relaxed by the application of copulas. A 
copula is a distribution on the unit hypercube with uniform marginal distributions (Joe, 2014). It contains all the 
information about the dependence between elements of a random vector. One can extract such a dependence 
structure corresponding to e.g. multivariate Gaussian distribution in the form of a Gaussian copula and use it to 
construct a BN with this copula and different marginal distributions. Other types of copulas are available that are 
able to model asymmetries and/or tail dependencies. In Figure 3 two bivariate copula densities are presented.  

 
 
 
 

 
 

 
 
 
 

 
 
 
 
 

 
Fig. 3. Copula densities: Gaussian (a) and Gumbel (b) with the same strength of dependence  

measured with Spearman correlation equal to 0.7. 
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In (Kurowicka and Cooke, 2005), a copula-based BN approach was introduced. It is based on the 
representation of each conditional density in the factorization in (1) using a sequence of bivariate (conditional) 
copulas (see also (Bauer  et al., 2012; Bauer and Czado, 2016)). For a node that has more than one parent, the 
convention is to order its parents (construct a parental ordering) and assign several copulas. First, a copula is 
assigned between the node and its first parent; then a copula is assigned between the node and its second parent 
conditional on the first parent; then a copula is assigned between the node and its third parent conditional on the 
first and the second parents. This process continues for all parents of each given node. Note that all these 
(conditional) copulas are unconstrained, in the sense that they can be chosen independently of each other and 
still form a valid density. 
 
Definition 1 
A pair-copula Bayesian network (PCBN) is composed of: 

 (qualitative part) a DAG, G and a set of orders of parents of each node denoted as O,  
 (quantitative part) marginal densities of variables corresponding to each node in G and the set of 

conditional copulas , where pa(v;w) denotes a set of parents of v before w in the order O (for 
nodes without parents  by convention). 

 
The joint density  in (1) in case of pair copula specification, can be rewritten  
 

                       (2) 
 

where the functions   can be computed from copulas assigned to the arcs of BN. This 
distribution is composed of product of margins (the first product in (2)) and the product of copulas for each node 
and its parents (the second product in (2)). This second product is a factorization of the joint copula 
corresponding to the joint density, which can be denoted as cV. 

When all copulas in the factorization (2) are Gaussian copulas, then the joint distribution of variables 
corresponding to nodes in the graph is the distribution with copula cV, which is the joint Gaussian copula. This 
makes computations in the model much more traceable and efficient. In the next subsection the application of 
gaussian copula BN is presented. 

2.1. Gaussian copula-based BNs in air transport safety 

The Netherlands Ministry of Transport, Public Works and Water Management commissioned a project on a 
Causal Model for Air Transport Safety, known as CATS. This model aimed to describe the gate-to-gate risks 
inherent in the complete aviation system. Aviation accidents result from a combination of various causal factors, 
including human errors, technical failures, and environmental and management influences, leading to specific 
accident categories like loss of control, collision, fire, etc. The causes and consequences of these accident 
categories vary depending on the phase of flight in which they occur, such as taxi, take-off, en-route, etc. 

Event Sequences (33 incorporated in CATS) leading to accidents were developed and depicted in Event 
Sequence Diagrams (ESD), which were categorized according to flight phases: Taxi, Take-off, Climb, En-route, 
and Approach and Landing. For each pivotal event in the ESDs, Fault Trees (FTs) were developed and 
quantified using data obtained from ICAO's ADREP database, provided by airlines and airports. In over 100 
instances in the final model, human intervention is required to prevent an accident. The probability that these 
actions do not result in the desired effect is described in human performance models (HPM) for the crew, ATC 
controllers, and maintenance technicians. These models contribute to the influence on human error probability 
included in FTs. 

Figure 4 presents the HPM for the crew, which is a Gaussian copula BN. The marginal distributions of the 
nodes are quantified using existing data, except for nodes 6, 7, 9, and 10, whose distributions were assessed by 
experts following the Classical Model protocol (Cooke, 1991). The dependencies in these models (in form of 
Spearman (conditional) rank correlations) were obtained from experts using the procedure presented in (Morales 
et al., 2008), which is based on assessing exceedance probabilities. Similarly, two other HPM models were built 
and quantified. Through functional connections, all parts of the model were integrated into the CATS model 
presented in Figure 5. A comprehensive description of the model can be found in the final report for this project 
(Ale et al., 2008). 

 



   

 
 

Fig. 4. HPM for the crew. 

 

Fig. 5. CATS model with top node representing an Accident, middle part contains ESDs and FTs  
developed for these ESDs and underneath HPM models are placed. 

In (Ale et al., 2010) CATS model was used to analyse the crash of Turkish Airlines TK 1951 flight 
approximately 1.5 km before the intended runway at Amsterdam Schiphol Airport in 2009. The information 
about parameters and causes the crash were mapped on the model. The results have shown that the probability of 
a crash predicted by the model increases dramatically if instruments command a trajectory towards terrain and 
the crew does not notice that (exactly what happened in TK 1951 accident). The analysis show that an integrated 
model can be used to detect vulnerabilities of the air transport system.  

Other applications of Gaussian copula-based BN can be found e.g. in (Hanea et al., 2015) and (Delgado-
Hernandez et al., 2012). 



   

2.2. Pair-Copula BNs 

The dependence realized by the Gaussian copula might not be sufficiently flexible for modeling complicated 
relationships that are asymmetric and/or tail dependent. If one wants to apply the representation presented in (2) 
in case the copulas assigned to each arc of the DAG are not necessarily Gaussian some computational issues can 
occur.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. (a) BN with v- structure; (b) BN diamond structure 4 nodes; (c) BN interfering v-structures. 

Let us consider three graph structures in Figure 6. For the v-structure presented in Figure 6 (a) the following 
copulas can determine dependencies represented by arcs in this graph: and  and the joint copula 
density is  

 

. 
 

Note that in the formula above the order of parents for node 4 was chosen to be 1, 2, 3 and that the conditional 
margins   are now simplified to . If instead the order of parents of node 4 was 3, 1, 2 then we 
would require copula and  and the joint copula density would be the product of these copulas. In 
this case, the arguments of the conditional copulas are easy to compute as all parents are mutually independent, 
hence ,  and  is computed from the specified copula  by differentiating the 
distribution function (cdf) of this copula with respect to . Similarly,  can be computed from cdf of copula 

 Other parental orderings could be used as well and they would also not lead to computational issues.  In 
general, when G is such that there is at most one path between each node (G is then called a multitree), then for 
each node, the variables corresponding to the parents of this node are independent and there will be no issue in 
computing the arguments of the (conditional) copulas in PCBN. 

This is in contrast to the diamond structure presented in Figure 6 (b). In this case the copula density 
corresponding to the density, denoted now as  , is: 

 

. 
 

In this case the margin  cannot be deduced directly and needs to be computed by integration:  
 

 
 

The computational difficulties are caused by the undirected cycle with length larger than three, U1-U2-U4-
U3-U1, in the undirected graph obtained from the diamond DAG by replacing arcs with edges. The larger the 
cycle is, the higher-dimensional integral will be needed to compute the arguments of conditional copulas 
corresponding to arcs of v-structure at a node. Note that if all copulas are Gaussian the required margin can be 
computed from the correlation matrix which contains parameters of this model.  

If we add an arc  to the DAG in Figure 6 (b) (we denote the corresponding copula as then there 
exists an assignment of (conditional) copulas that will not require any integration. In this case, the density is: 

 

. 
 

However, if we decided instead of  and  to specify  and , then  would need to be computed 
via integration again. In short, because of the v-structure at node U4, the copula  is required. Hence, this 
copula has to be specified, for example by adding the . Then the conditional copula can then be 
assigned to the Finally, let us look at Figure 6 (c). In this case, we see that the v-structure at node 
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U3 ''interacts'' with two additional v-structures: one at node U4 and one at node U5. The v-structure at U3 
requires the assignment of copulas  and  or  and  . To avoid integration in the v-structure at U4, 
the specification of  is required; but at the same time, integration in the v-structure at U5 can be avoided only 
if  is known. This creates a problem, since both  and cannot be assigned independently at the same 
time.  

The latest development in the theory of PCBNs (Derumigny et al., 2024) is that the structures presented in 
Figure6 (b) and (c) are the only problematic type of structures. If the graph G does not contain active cycles 
(structures as in Figure 5 (b) ) and interfering v-structures, than there exists an order of parents such that the 
integration is not needed.  The full characterizations of graph structures that are computationally efficient is 
proven, estimation procedure for restricted PCBN have been developed. The model will be implemented shortly 
as an open source package in R.  

2.3. Pair-Copula BNs to asses sea level rise (SLR) 

As an illustration of PCBNs with other then Gaussian copulas we present below a recent application of these 
models to compute sea level rise contributions from ice sheets (Bamber et al., 2019). More extensive treatment 
of PCBNs for this application is presented in (Kurowicka et al., 2024). The expert judgment study following 
protocols of (Cooke, 1991) have been performed with twenty two experts. The assessments concerned 
contributions to see level rise (excluding the baseline values for 2000-2010) due to Accumulation (A), Runoff 
(R) and Discharge (D) for Greenland (G), West (W) and East (E) Antarctic ice sheets in two temperature 
scenarios Low and High (rising and stabilizing in 2100 at  or , respectively) in years 2050, 2100, 
2200 and 2300. Experts provided their answers in the form of 5%, 50% and 95% percentiles of quantities of 
interest (see an example below). 

 

In the case of Greenland, for a global mean annual Surface Average Temperature rise of 3  by 2100 with 
respect to pre-industrial, what will be the integrated contribution, in mm to SLR relative to 2000-2010 of the 
following: 
i) accumulation 
5% value:  ___________   50% value: ___________      95%value:: ____________ 
ii) runoff 
5% value:  ___________   50% value: ___________      95%value:: ____________ 
iii) discharge 
5% value:  ___________   50% value: ___________      95%value:: ____________ 
 

Similar questions concerned West and East Antarctica and different temperatures up to 2200 were asked. 
Experts provided also answers to so called seed questions, which were used to assess their performance and 
choose weighted combination of experts to obtain distributions of see level rise contributions for different 
scenarios. Following the procedure of the Classical Method (Cooke, 1991) it has been obtained that eight experts 
gotten non-zero weight, where the highest weights equal to 0.28 and 0.3 were of expert 3 and 14, respectively.  

All experts 
to pre-industrial. Experts were asked to assess bivariate dependencies between pairs presented in Figure 7 in 
form of the 0.5 and 0.95 exceedance probabilities (P(Y > qy, 0.5 | X > qx,0.5),  P(Y > qy, 0.95 | X > qx,0.95)). Some 
experts were comfortable enough to provide assessments in the form of values of these probabilities, others 
preferred to use classification presented in Table 1. All experts  answers were translated to the classification 
scheme in Table 1 (this classification differs slightly from the one presented in (Bamber et al., 2019)). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Bivariate dependencies assessed by experts. 

GR GA 

GD 

GR GA 

GD 

WR WA 

WD 

ED 

EA 



   

Table 1. Colour coding dependencies. 
 50% 

ExProb 
95% 
ExProb 

 0.8 0.8 
 0.7 0.5 
 0.6 0.3 
 0.5 0.05 
 0.4 0.03 
 0.3 0.02 
Strong negative 0.2 0.01 

 
Table 2. Copulas ( with parameters) corresponding to colour coding.  

50% 
ExProb 

95% 
ExProb 

Copula 
(param) 

50% 
ExProb 

95% 
ExProb 

Copula 

  Ind   Gum(1.25) 
  Frank(1.8)   Gum(1.5) 
  Frank(2.2)   Gum(1.65) 
  t(0,1)   SClay(2) 
  Gauss(-0.2)   SClay(2.5) 
  Gauss(0.6)   SClay(3) 
  Gauss(0.8)    

 
The copulas corresponding to assessed 0.5 and 0.95 exceedance probabilities are presented in Table 2. We 

can see that , strong tail together with strong 
overall dependence corresponds to the Survival Clayton copula, and medium tail and overall dependence is 
associated with either Gaussian or with Gumbel copulas. In case when experts assessed 0.5 exceedance 
probability to be equal to 0.5 and indicated that the tail dependence is present the t copula is chosen. To quantify 
dependencies in  PCBN the conditional copulas are computed (out of 5 types of copulas discussed above) such 
that the 0.5 and 0.95 exceedance probabilities for bivariate margins specified through the conditional copula are 
as close as possible to the ones specified by the expert. The results for two experts with the highest weights are 
presented in Figure 8. We can observe that both experts indicted additional independencies between variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 8. Pair copula BNs with copulas (blue) and conditional copulas (red)  
assigned to arks for two experts with highest weights (experts 3 and 14). 

 
The results of Icesheets contributions to see level rise by 2100 with +3oC warming in [mm] for the case 

without and with dependence included are shown in Table 3. For comparison also the equal weight combination 
of experts assessments without dependencies is shown. 
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Expert 14 

Gum(1.5) 
t(0,1) t(0,1) 

SClay(3)1) 
Gauss(0) 

Strong positive 
Positive 
Weak positive 
Independent 
Weak negative 
Negative 

  
    
   
     
     
    
  



   

Table 3. The summary statistics of icesheets contribution to sea level rise for the case of +5 in [mm].  
EW (PW) denotes  (for 8 experts)  

and Indep (Dep) means that the independence (BN dependence) was used. 

 Mean StDev 5% 50% 95% 
EW Indep 622.9 575.5 2.3 460.5 1728.1 
PW Indep 586.9 468.0 12.6 482.7 1481.0 
PW Dep 584.8 551.5 -4.4 434.1 1646.2 
 

Note that due to changes in the way the copulas and their parameters are chosen as well as the different 
graphical representation of the dependencies (vine copulas were used in (Bamber et al., 2019)) the results of 
performance based combination of experts with dependence differ slightly from the one presented in (Bamber et 
al., 2019). We can see that there are changes in the distribution of icesheets contributions to sea level rise due to 
dependencies recognized by experts.   

3. Conclusions 

In this paper BN models, which found numerous applications in many areas, have been introduced. Their 
popularity stems for the intuitive graphical representation of the problem, mathematical correctness and flexible 
computer implementations. BNs are used in the data rich applications were one is able not only to estimate 
parameters of these models but also search for the graph structure supported by the data. They can also be 
applied in cases when not only structure but also parameters have to be assessed from experts. The flexibility of 
BNs to perform well in various situations as well as natural extensions to dynamic modelling environments made 
these models a valuable tool that engineers embraced or should embrace in the future. New developments in 
copula based BNs have been presented in this paper. The extensions of this kind of BNs to allow for non-
gaussian types of dependencies is new and the implementation of PCBNs is not yet freely available. When ready 
we expect them to have a significant impact in safety and reliability applications.      
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