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Abstract 

Uncertainty quantification and management (UQ&M) has become an integral part of the design for complex design 
processes. We describe a process developed at AIRBUS to assist during the conceptual design process. A number of work 
packages (WPs) are developed concurrently to satisfy evolving constraints on the uncertainty distribution of the sum of the 
weights of all WPs. The chief engineer has to issue uncertainty targets to the individual WPs, called margin setting, to evolve 
the conceptual design into compliance with tightening constraints. The focus of this article is the assessment of dependence 
between WP uncertainties and the impact of dependence on compliance. Although it is not possible to provide the chief 
engineer with an algorithmic solution for margin setting, mathematical uncertainty modeling provides important and useful 
insights. 
 
Keywords: uncertainty quantification, uncertainty management, expert judgment, sensitivity analysis 

1. Introduction 

This article describes a process for uncertainty quantification and management (UQ&M) developed by the 
National Institute of Aerospace and its team members at Georgia Tech in concert with the Airbus design team. 
The basic design process for a new aircraft is sketched in Figure 1. From feasibility to qualification, the design 
passes through a number of maturity gates (MG). The entire process may consume several years and involve a 
commitment of a significant portion of company assets. A design flaw at an early stage can have very serious 
consequences if it passes undetected to late phases.  

Because the initial conceptual design evolves rapidly, the UQ&M must evolve concomitantly while 
consuming a modest amount of resources. Because qualifying and evolving a high dimensional joint distribution 
can, in principle, be enormously complex; a major challenge is finding an appropriate complexity level that 
captures the relevant information and can be articulated with greater fidelity as the design itself becomes more 
detailed. The general picture of the UQ&M convergence path is shown in Figure 2. 
 

 
Fig. 1. Design process. 
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Fig. 2. UQ&M convergence. 

Weight is a primary driver in aircraft design. Hence the development of weight projections will interact with 
the conceptual design at each stage such that the probability of hitting the final weight targets moves upward as 
the design evolves and the uncertainties in individual component weights shrink. Passing through the maturity 
gates requires that the probability of exceeding the target weight should be less than a level that is prescribed at 
each maturity gate. 

The weight of the aircraft is the sum of the weights of its components. The number of components is large, 
but at early design stages, they can be grouped into 52 subsystems or work packages(WP) as shown in Table 1. 
The uncertainties in these WP weights have significant interactions. For example, if WP-16 (Wing Structure 3) 
needs to be heavier than originally estimated, it is likely that WP-19 (Wing Structure 6) will also get heavier. In 
this article, we describe an operational method for managing the uncertainties in the weights of WPs in Table 1 
while accounting for dependencies. The following section describes weight uncertainty assessment (WUA), the 
system for assigning marginal distributions to these weights. Section 3 examines the impact of dependence on 
the weight uncertainties, and describes a system for quantification and management. The purpose of UQ is to 
enable the chief engineer to set margins, that is, to communicate to WP leaders how their weight distributions 
should change in order to pass the next maturity gate. Section 4 looks at margin setting and at performance as 
measured by realized values at MG13. Section 5, explores mathematical tools to aid the margin setting. A final 
section gathers conclusions and recommendations. 

2. Weight Uncertainty Assessment (WUA) 

In this section, we briefly discuss the process of estimation of marginal distributions of WPs which is detailed 
for the wing box model in (Reis et al., 2018). For each WP its weight is represented by a probability density 
function with the mean i and the standard deviation i   RLi) i where RLi denotes the reliability level 
assumed for different estimation levels (e.g. for analytically estimated load the reliability level is 0.95, for 
mature load 0.97 and for supplied data 0.93). The process is divided into two stages, first, the Primary Weight is 
modelled with an extensive simulation study that imposes a set of static loads and flight conditions to the wing 
model and calculates stresses on the different parts of the wing. The Secondary Weight, which deals with non-
structural weight estimation, in the case of the wing box example in (Reis et al., 2018), is modelled using 

. The results of WUA for the first twenty heaviest WPs are 
shown in a bar plot in Figure 3, where the black dot represents i and the bar length is 2 i. We can observe that 
the WP-50 and WP-45 are the largest contributors to the total weight. The remaining WPs not shown in Figure 2 
have a relatively small contribution to the total weight at this stage. 

 
 
 



   

Table 1. Work Packages (note there is no WP-2). 

Work Packages 

WP1  Wing Controls 1 WP19  Wing Structure 6 WP36  Vertical Tailplane 1 

WP3  Wing Controls 2 WP20  Wing Structure 7 WP37  Vertical Tailplane 2 

WP4  Wing Controls 3 WP21  Wing Structure 8 WP38  Vertical Tailplane 3 

WP5  Wing Controls 4 WP22  Wing Structure 9 WP39  Vertical Tailplane 4 

WP6  Wing Controls 5 

WP7  Wing Structure 1 

WP8  Wing Kinematics 

WP9  System 1 

WP10 System 2 

WP11 System 3 

WP12 System 4 

WP13 System 5 

WP14 System 6 

WP15 Wing Structure 2 

WP16 Wing Structure 3 

WP17 Wing Structure 4 

WP18 Wing Controls 5 

WP23  Wing Structure 10 

WP24  Wing Structure 11 

WP25  Wing Structure 12 

WP26  Wing Structure 13 

WP27  Wing Structure 14 

WP28  Wing Structure 15 

WP29  Wing Assembly 

WP30  Wing Structure 16 

WP31 Fuselage Structure 1 

WP32  Fuselage Structure 2 

WP33  Fuselage Structure 3 

WP34  Fuselage Structure 4 

WP35  Fuselage Structure 5 

WP40  Horizontal Tailplane 1 

WP41  Horizontal Tailplane 2 

WP42  Horizontal Tailplane 3 

WP43  Horizontal Tailplane 4 

WP44  Pylon 

WP45  Power Unit 1 

WP46  Power Unit 2 

WP47  Power Unit 3 

WP48  Nose Landing Gear 

WP49  Main Landing Gear 

WP50 Cabin 

WP51  System 7 

WP52  System 8 

3. Dependence 

This section focuses on the dependence between the WPs with marginal distributions given in Section 2. The 
distributions in Section 2 are all Gaussian by default. The margin setting mentioned in the introduction can alter 
the WP distributions such that they are not Gaussian. However, 
assumed to be Gaussian. This means that the joint distribution is assumed to be derived from a Gaussian by a 
transformation of the marginal distributions. This assumption can also be relaxed at great computational 
expense, but such relaxations are not contemplated here.  
 

 
Fig. 3. Bar plot of marginal distributions of heaviest WPs. 

3.1 Importance of dependence 

The first task is to examine whether dependence is a potential issue. A rough cut analysis assigns various 
 

 



   

Table 2. Rough cut constant correlations impact on sum weight [kg]. 

 Independent All 0.1 All 0.2 All 0.5 All 0.8 

mean 1.4851E+5 1.4851E+5 1.4851E+5 1.4851E+5 1.4851E+5 

Standard deviation 3.1897E+3 4.8775E+3 6.1160E+3 8.8461E+3 1.0913E+4 

5% 1.4326E+5 1.4049E+5 1.3845E+5 1.3396E+5 1.3056E+5 

95% 1.5375E+5 1.5653E+5 1.5857E+5 1.6308E+5 1.6646E+5 

 
If the WP weights are all independent, the mean sum weight is 148,500 kg with a standard deviation 3190 and 

5 and 95 percentiles as indicated in Table 2. Imposing a weak constant correlation of 0.2 has the effect of 
doubling the standard deviation of the sum weight. A constant correlation of 0.8 increases the standard deviation 
by nearly a factor 3. If the potential uncertainty increase as a result of the dependencies in Table 2 is judged 
acceptable, one may forego detailed analysis and conservatively assume a strong global correlation as default. In 
this case, the conservative default option is not acceptable. The increment of the 95th percentile from 154,000 to 
166,000 kg is too large and would cast a pall over the probability of meeting the target, triggering unnecessary 
modifications to the conceptual design. 
 
3.2 Dependence quantification  
 

Quantifying dependence in a 51-dimensional joint distribution is potentially prohibitively complex. The 
resources spent on dependence quantification must be commensurate with the time and resources available. 
There are 1275 correlation values that must be assigned in order to specify a joint distribution with a Gaussian 
copula. Moreover, these correlation values must form a positive definite matrix: the eigenvalues of the 
correlation matrix must all be positive. Asking engineers to assess 1275 correlations is not feasible. A 
qualitative-to-quantitative process is adopted to develop a dependence structure appropriately positioned 
between the independent case and constant strong correlation cases in Table 2. To this end, the WPs are first 
ordered by importance. Importance is determined by weight and weight uncertainty. All of the WPs have 
important uncertainties, so a good starting point is simply to order the WPs by weight. A 51 by 51 matrix is now 
created with these weight-ordered WPs from which a correlation matrix will be derived. To get a correlation 
matrix that captures the molar dependence features, experts precede column-wise, starting with the heaviest WP. 
The entries in each row of a given column are assigned a dependence qualifier as strong, medium, weak, or not 
salient. This can be accomplished by simple colour coding. Not salient means either that the dependence is not 
important due to the low weight of the row WP, or that it is so small as to be negligible, or that the available 
information is so weak that no quantification is defensible. Strong, medium, and weak entries are assigned the 
initial correlations of 0.8, 0.5, and 0.2. No salient cells are left blank. A fragment of the elicited qualitative 
matrix is shown in Figure 4. 
 

 
 

Fig. 4. Qualitative correlation matrix fragment. 
 

 



   

The engineer responsible for populating this matrix described the experience as follows: 
 Overall the experience was valuable and painless, focusing on what could be dependent elements and 

why. The elicitation took about two hours. 
 The final result should be given a sanity check with and without dependence to see if it makes sense. 

Does the importance ranking of WPs make sense? 
 It took some effort to synchronize the brain with the symmetrical nature of the process. The 

probabilistic relations are bi-directional but the causal relations are not. 
 Not having to fully populate the matrix is much appreciated. 
  It is good to focus on the big-weight items first. 
 Using high/medium/low ratings is helpful, so as not to agonize over the details. 
  It would be good to perform this with more than just one subject knowledge expert. 

A typology of causes of correlations was found: 
 Weight drivers are the same or dependent. An example is example loads: If loads go up on the wing 

then the Wing Structures WPs will all be impacted; chances are that if loads go up on the wing they will 
go up on the tail so HTP (horizontal tail) will be impacted. 

 The weight of one WP is a driver for another. For example, landing gear mass will depend on overall 
aircraft mass to some degree. However, aircraft mass may be traded off against payload. 

 The Weight of one WP is a secondary driver of another. A design decision may cause the bending 
moment carrying part of the wingbox spars to increase. Consequently, the covers' weight might be able 
to decrease as the spars take the load away from the covers. 

 Common supplier for several WPs. Perhaps a supplier has been conservative and right at the end all that 
conservatism is removed or perhaps they have a dubious weight management process and suddenly 
surprises arrive. These may impact all the WPs they are managing. 

 
3.2 From qualitative to quantitative  
 

Out of 1275 correlations, the expert detected 16 strong, 39 medium, and 110 weak and left 1110 cells in the 
matrix unspecified. In Figure 5 the graph of WPs with strong and medium correlations represented as thick and 
thin edges is shown. We can see that e.g. WPs 4, 21, 22, 23, 24, which are Leading Edge subsystems are highly 
correlated. The partially specified 51 by 51 matrix with ones on the main diagonal has to be completed to a 
positive definite matrix. We used the optimization algorithm of (Qi and Sun, 2006) to find the nearest correlation 
matrix with the minimal square differences of off-diagonal correlations from an initial matrix. The optimization 
problem has been solved with a recursive, Newton-type, algorithm which requires specification of an initial 
matrix and the tolerance error and is implemented in the Matlab function CorrelationMatrix. A number of 
different settings with different initial matrices were employed to steer the optimization algorithm. They all give 
similar results as shown below where Matlab 0, 0.1, and 0.15 refer to results where the initial matrix in the 
optimization problem is such that all unspecified cells are assigned values 0, 0.1, and 0.15, respectively. The 
draconian outcomes in Table 2 are not supported by the more detailed engineering analysis of dependence 
presented in Table 3. 

Table 3. Rough cut constant correlations impact on sum weight [kg]. 

 Independent Matlab 0 Matlab 0.1 Matlab 0.15 

mean 1.49E+05 1.49E+05 1.49E+05 1.49E+05 

Standard deviation 3.19E+03 4.63E+03 5.59E+03 8.8461E+3 

5% 1.43E+05 1.41E+05 1.39E+05 1.39E+05 

50% 1.48E+05 1.49E+05 1.49E+05 1.49E+05 

95% 1.54E+05 1.56E+05 1.5857E+5 1.58E+05 

4. Sensitivity analysis and margin setting 

As noted, the goal of UQ&M is to provide the chief engineer with tools for setting informed margins for the 
leaders of the various WPs. This involves identifying the most important contributors to the uncertainty of the 
sum weight. The key notion here is the correlation ratio (see e.g. (McKay, 1995)) defined in (1).  

 

CR(WPi) =Variance over x of (Expectation of Sum Weight | WPi = x ) / Variance(Sum Weight)                        (1) 
 



   

WPi at all, as if WPi belonged 
to a different airplane and was included here by mistake. The expected sum weight would not depend at all on 
the value of WPi and for any value of x the expectation of Sum Weight would be the same. The variance over x 
of this expectation would be zero, hence also the correlation ratio.  Suppose on the other hand that WPi was 

Sum Weight. In this case the variance of the numerator would equal the variance of Sum Weight and the 
correlation ratio would equal 1. Intermediate cases arise when WPi contributes to Sum Weight without 
completely determining it.  The correlation ratio of WPi with respect to Sum Weight will increase if the mean 
weight of WPi increases and/or if the correlation of WPi to other work packages increases.  The variance of WPi 
does not directly contribute to the correlation ratio, except in the case that WPi
WPi is independent of all other work packages by definition. The correlation ratio, and therefore the 
identification of important WPs, may be strongly affected by the dependence in the joint distribution of all WPs. 
For example, WP33 (Fuselage: middle) would explain 10% of the variance in Sum Weight if all WPs were 
mutually independent. Taking Matlab0.1 dependence into account, WP33 explains 37% of this variance. Because 
of the correlations with other WPs, knowing the value of WP33 would sharply constrain the uncertainties in 
several other components. This does NOT mean that by changing WP33 we could miraculously change the 
weights of other components.  Correlation is not causation.  However, if the correlation ratio of a WP is higher 

 independent, this signals that the chief engineer might pay close 
attention to the causes of the correlation.  If the correlation is based on physical relations (e.g. other fuselage 

WP31 nose, WP32 fwd, WP34 aft) then addressing a common cause of all these weights (enhanced material, 
lighter wiring) would have a larger effect on the uncertainty of Sum Weight than we would surmise without 
taking dependence into account. On the other hand, if the correlation were due to a common supplier, then 
changing a supplier might have a comparable effect. However, a high value of the correlation ratio means that 
any change in WP33 might entail changes in many other WPs. 
 

 
 

Fig. 5. Graph of WPs where edges represent strong (thick) and medium (thin) correlations assessed by the expert. 
 



   

Table 4 shows the WPs ranked with respect to the correlation ratio under the Matlab 0.1 dependence model 
and the independent model. Notice that the importance rankings by correlation ratios are different in the 
independent and dependent cases. Sometimes, as in WP50, the effect of dependence is slight. In other cases the 
effect is substantial. Taking dependence into account, WP51 explains 24% of the variance in sum weight and is 
ranked 5th in importance. Without taking dependence into account, WP51 explains 0.4% of the variance and is 
ranked 15th. 
Because of the different possible causes of correlation, and because a causal analysis cannot be performed solely 
on the basis of statistics, it is not possible to derive simple advice to a chief engineer on how to use correlation 
information in setting margins. However, a few general guidelines may be given: 

1) Correlations do not by themselves affect the expected weight of the aircraft, only the uncertainty in 
aircraft weight. 

2) In the independent case correlation ratios sum; the variance explained by WP33 and WP34 together 
would be the sum of their separate correlation ratios. Since the sum weight is just the sum of all the 
WPs, the sum of correlation ratios in the independent case of Table 4 is 1. In the dependent case, they 
sum to 6.1. This gives an overall indication of the importance of addressing dependence in driving 
down the uncertainty of the sum weight. 

3) Identifying clusters of WPs with physical interdependencies and comparing their sum correlation ratio 
with the sum in the independent case is a good strategy for prioritization. For example, the fuselage 
WPs (31, 32, 33, 34) have a sum correlation ratio of 1.20 whereas their independent sum is 0.26. If we 
can identify and address a common cause (e.g. wiring weight), that will have an outsized effect in 
reducing sum weight uncertainty, relative to the independent case. 

4)  If the correlation causes are informational rather than physical (cause d) in Section 3), then the 
remediation strategies may be different, perhaps easier, than in cases with physics-based correlations. 

Table 4. CR under Matlab 0.1 dependence and independence, ordered by correlation ratio. 

Sensitivity: correlation with sum weight and correlation ratio 

Dependent Matlab 0.1 Independent 

Name Correlation  CR Name Correlation CR 

WP49 0.603 0.363 WP50 0.570 0.325 

WP50 

WP33 

0.581 

0.580 

0.337 

0.337 

WP45 

WP33 

0.468 

0.315 

0.220 

0.100 

WP34 

WP51 

WP45 

WP32 

WP30 

WP31 

WP44 

WP25 

WP15 

WP16 

WP21 

WP19 

0.522 

0.492 

0.489 

0.475 

0.436 

0.418 

0.408 

0.401 

0.385 

0.379 

0.377 

0.371 

0.272 

0.242 

0.239 

0.226 

0.190 

0.175 

0.167 

0.161 

0.148 

0.144 

0.143 

0.138 

WP49 

WP34 

WP31 

WP32 

WP46 

WP15 

WP44 

WP16 

WP35 

WP21 

WP25 

WP51 

0.310 

0.291 

0.217 

0.158 

0.150 

0.134 

0.122 

0.105 

0.082 

0.073 

0.071 

0.066 

0.096 

0.085 

0.047 

0.025 

0.023 

0.018 

0.015 

0.011 

0.007 

0.006 

0.004 

0.003 

5. Mathematics in margin setting 

As explained above, mathematics is not able to provide simple advice to a chief engineer in setting margins. 
Sensitivity analysis as shown in the previous section identifies which WPs contribute most to the variance of 
total weight. Exactly those WPs could be targeted to reduce uncertainty in total weight, e.g. reduction of the 
standard deviation of only WP33 by 50% would lead to the reduction of the 95 percentile of total weight by 
about 448 kg. A chief engineer would have to find out whether such a reduction is possible and would have to 
weigh its benefits and costs. In this section few additional results show how mathematics can be useful in margin 
setting. Mathematically the problem of a chief engineer can be structured as setting means and/or standard 



   

deviation of WPs (or groups of WPs) by changing them minimally to achieve target total weight. This 
formulation assumes that the dependences cannot be changed. As a measure of distance between the desired and 
the actual distribution the relative information (Kullback-Leibler divergence (Kullback, 1959)) can be taken. For 
two d-dimensional joint normal distributions f1 and f2 with mean vectors 1, 2 1 2 , 
respectively, the relative information is: 

I(f1| f2) = , 

where , denote the determinant and the inverse of 1 and T is vector transpose. Moreover, 1= D1R D1 
where R is a correlation matrix and D1 is the diagonal matrix with a vector of standard deviation, 1, on the main 
diagonal. Hence the mathematical problem that we want to solve is: 

 
Find vectors 1 and 1 such that I(f1| f2) is minimized, where R is Matlab 0.1 dependence,  2 and 2 are 
specified via WUA, subject to target total weight (which could be the prescribed mean and variance total 
weight or specified 95 percentile of the distribution of total weight).  

 
When the joint distribution of WPs is assumed to be normal constraints on variance or 95 percentile of total 

weight is equivalent to the 95 percentile, denoted as q95,  computed: q95= t + 1.96 t where t and t are mean and 
standard deviation of total weight. Hence all results below are shown by requiring that q95 or the probability of 
total weight exceeding 1.54E+5kg (the value when WPs were considered independent) is not larger than 0.05 is 
enforced for distribution of total weight when correlations are taken into account. 

 Minimally informative adjustment of standard deviations of WPs keeping means fixed. 
In Figure 6 one can observe how much standard deviations of WPs would need to be decreased in case 
when we require that means stay unchanged and q95 must be decreased by 4072 kg, hence to the level of 
the 95 percentile of total weight when WPs are independent.   

 
Fig. 6. Differences of means of WPs to enforce the 95 percentile of total weight equal to 1.54 E+5 (case of independent WPs).

 
Due to complex process of assessing uncertainty of weights of WPs in the WUA it might be unrealistic to 

expect that one can reduce standard deviations of WPs. Hence below we show how means would need to be 
adjusted to achieve the target total weight.  

 Minimally informative adjustment of means of WPs keeping standard deviations fixed. 



   

For q95 to be equal to 1.54E+5 instead of 1.58E+5 (when WPs are Matlab0.1 dependent) while keeping 
standard deviations fixed the means of WPs have to be reduced. The results are shown in Figure 7. 

 Minimally informative adjustments of means of groups of WPs.  
If only the mean of WP50 (Cabin) is considered to be adjusted while keeping the standard deviation 
fixed, its mean would need to be reduced by 4072 kg, which is about 18% of its WUA value. However, 
in case one can also consider the reduction of the mean of WP51 (Airco) the minimally informative 
solution that would achieve the target q95 requires the reduction of means of WP50 and WP51 by 16.7% 
and 35.6% of their original value, respectively.  

A chief engineer might want to consider a different, lighter design of the fuselage of the aircraft than the 
minimally informative solution that reduces means of WPs 31, 32, 33, 34, and 35 on average by about 10% 
comply with the target 95 percentile of total weight equal to 1.54E+5. 

Different groups of WPs can be considered in a similar way to be adjusted to comply with the target total 
weight. A chief engineer would have to find out which adjustment is feasible and cost-effective. However, the 
analysis presented above provides a chief engineer with tools to make an informed decision to achieve desired 
targets at each stage of the design.  

 
Fig. 7. Differences of means of WPs to enforce the 95 percentile of total weight equal to 1.54 E+5 (case of independent WPs). 

6. Conclusions 

The problem of margin setting is common to many complex design processes in which a chief engineer must 
communicate uncertainty reduction targets to designers of individual components in order to move the system 
design into compliance with system-level probabilistic constraints. In this case, the system-level constraint 
involved sum weight but it could just as easily apply to other measures of merit such as cost, risk, or time. This 
study focuses on the quantification of dependence in large problems. Although the mathematical problem is very 
complex, it is possible to develop qualitative assessment tools that are intuitive and sensible for the engineers 
and which can inform complex mathematical models. One such tool is presented here, based on the partial 
specification of a qualitative correlation matrix. Although the problem of margin setting cannot be reduced to a 
mathematical optimization problem, mathematical modeling can contribute important insights. First and 
foremost among these is highlighting strong dependences. Whether these dependencies are typed as a common 
driver, primary or secondary driver, the common supplier is critical for setting margins for the dependants. 
Further, recognizing dependence clusters may help in coordinating design work across WPs. Prioritizing WPs 
for design review should take dependence information into account. The correlation ratio, or fraction of 
explained variance remains an important indicator but its interpretation changes significantly once dependence is 
taken into account. The fractional explained variances no longer sum to unity but sum to a quantity which 



   

indicates the total dependence in the system. The importance ranking of WPs can change significantly when 
dependence is taken into account. 
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