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Abstract 

With the rapid development of shipping industry, maritime accidents occur frequently, making research on maritime safety 
particularly crucial. In this study, a Feature Selection Balancing Framework (FSBF) is proposed, aiming to enhance the 
accuracy of predicting the severity of maritime accidents. Firstly, various oversampling methods are explored for their 
effectiveness in data balancing analysis, and the optimal oversampling method is identified. Secondly, a pre-training method 
of feature selection is employed to rank and select high-contributing features, thereby improving model performance and 
reducing computational costs. Thirdly, several machine learning methods are used to analyse their effectiveness in predicting 
accident severity, and establish a baseline model for maritime accident severity prediction. Fourthly, a series of ablation 
experiments are conducted to demonstrate the contribution of each module within the FSBF to the overall model 
performance. Finally, using the baseline model, accident severity prediction is conducted and the key factors that influencing 
accident severity are identified. The research results show that employing the KMeans SMOTE algorithm as an oversampling 
method, coupled with the use of Gradient Boosting Decision Tree, can make the prediction effect of model best. Furthermore, 
each module within the FSBF framework significantly improves the performance in predicting the severity of maritime 
accidents compared to predictions based on original data, offering an effective predictive tool to enhance maritime safety and 
mitigate the risk of maritime accidents. 
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1. Introduction 

The maritime industry constitutes a pivotal component of the global trade network, where ensuring maritime 
safety is crucial for safeguarding lives, the environment, and cargo. Despite substantial efforts by concerned 
parties to enhance maritime safety, the occurrence frequency of maritime accidents has not reached the 
anticipated levels (Cao et al., 2023b). Chen et al. (2019) conducted a thorough survey of quantitative risk 
analysis methods for ship collision accidents. A classification system was proposed based on the technical 
features of these methods, concluding with proposed enhancements for several representative approaches. Fan et 
al. (2020) proposed a risk analysis method based on Bayesian networks, which systematically categorized factors 
of various types of maritime accidents, revealing their interrelationships. However, the study did not adequately 
address the issue of imbalanced data. Wang et al. (2021) explored the correlation between the severity of 
maritime accidents and various factors using an ordered logistic regression model, offering robust support to 
maritime authorities. However, the study focused solely on the analysis of objective factors, lacking a 
comprehensive examination of human and managerial factors. Wang et al. (2022) conducted an in-depth 
examination of factors influencing severity through a zero-inflated ordered probit model. However, the analysis 
was not sufficiently comprehensive, particularly in addressing managerial factors. Lan et al. (2023) developed a 
data-driven method that combined association rule mining (ARM), complex networks (CN), and random forests 
(RF). This innovative approach identified crucial risk factors for predicting the severity of ship collision 
accidents. However, the study refrained from exploring other machine learning predictive models. In general, 
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these above studies reveal the interconnectedness of various risk factors with the severity of maritime accidents, 
providing essential references for future predictions of maritime severity. However, those existing studies have 
not adequately addressed the issue of imbalanced data. Additionally, in the selection of models for predicting 
accident severity, there is insufficient comparison of the performance of different models, pointing towards a 
constrained approach in model selection. 

This study makes a significant contribution by proposing a Feature Selection Balancing Framework (FSBF), 
providing a novel solution for predicting the severity of maritime accidents. The framework not only 
demonstrated notable performance improvements in experiments, but also offered valuable insights for 
addressing class imbalance and feature selection issues in related research areas. On the other hand, this study 
attempts to compare all combinations of five oversampling methods and four machine learning models, 
ultimately identifying the benchmark model combination that optimally enhances the effectiveness of the FSBF 
framework. 

2. Materials and method 

This study primarily focuses on predicting the severity of maritime accidents. However, the limited number of 
samples for severe accidents has resulted in an imbalance in classes. Firstly, in order to address the challenge of 
imbalanced data, this study explores diverse oversampling methods within the FSBF such as Synthetic Minority 
Over-Sampling Technique (SMOTE), Support Vector Machine- SMOTE (SVM-SMOTE), Borderline 
SMOTE (Borderline-SMOTE), KMeans SMOTE (KMeans-SMOTE), and Random Over Sampling (ROS), and 
find out the most effective oversampling strategy. Secondly, in order to find the features highly related to 
accident severity, a feature selection method based on model pre-training is developed. By ranking the features, 
the features with high contribution to the model performance are selected, which improves the model 
performance and reduces the calculation cost. Thirdly, through a comparative analysis of several machine 
learning models (Gradient Boosting Decision Tree, GBDT; eXtreme Gradient Boosting, XGBoost; Light 
Gradient Boosting Machine, LightGBM; Adaptive Boosting, AdaBoost) in predicting the severity of maritime 
accidents, the optimal model combination for severity prediction is determined. Finally, utilizing this optimal 
model, predictions of accident severity are made, accompanied by an in-depth analysis of the key risk factors 
influencing severity. The experimental framework is depicted in Figure 1. 
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Fig. 1. The experimental framework of this study. 

2.1. Data 

The data utilized in this study are derived from the previous research (Cao et al., 2023a; Wang et al., 2021). 
The dataset encompasses marine accident investigation report spanning the years 2000 to 2019, sourced from 
seven maritime investigation agencies, including China Maritime Safety (China MSA), Federal Bureau of 
Maritime Casualty Investigation (BSU), National Transportation Safety Board (NTSB), Japan Transportation 
Safety Board (JTSB), Australian Transport Safety Board (ATSB), Canadian Transportation Safety Board (TSB), 
and Marine Accident Investigation Branch (MAIB). The data has been meticulously filtered and screened 
according to the principles of authenticity and completeness, resulting in a final set of 1294 marine traffic 
accident investigation reports. 



   

2.2. Feature Selection Balancing Framework 

Within the FSBF framework, two key components are feature selection and data balancing. Feature Selection 
refers to the selection of the most representative, relevant or important feature subset from the original feature set 
for model construction or analysis. It serves to reduce model complexity, enhance model generalization, mitigate 
overfitting, and accelerate model training speed, thereby conserving computational resources (Li et al., 2017). 
Common feature selection methods include Filter, Wrapper, and Embedded approaches. Given the necessity of 
comparing the effectiveness of various machine learning models during the prediction process and the emphasis 
on analysing the contribution of different features to the models, Filter methods, which do not involve machine 
learning model training (Lal et al., 2006), and Wrapper methods, which incur high computational costs (Chen et 
al., 2020b), are deemed less suitable for this study. Therefore, Embedded methods are chosen, involving the pre-
training of machine learning models, ranking features based on their importance, and subsequently training the 
machine learning models in accordance with this feature order.  

In the context of classification issues, achieving balance in the data is crucial for both model training and 
performance evaluation (Ghorbani and Ghousi, 2020). In practical datasets, there can be significant disparities in 
the quantity of samples across different classes, potentially leading to the model being overly trained on the 
majority class samples while performing inadequately on minority class samples. To address this imbalance in 
data categories, the proposed FSBF framework incorporates methods for balancing the dataset, with the aim of 
equalizing the sample counts across various classes. Commonly employed methods for balancing data include 
Oversampling, Undersampling, and Combining Sampling strategies. Given this study emphasis on addressing 
the issue of inadequate learning from minority class samples, the Oversampling strategy emerges as a direct and 
effective approach. In comparison, Undersampling has the potential to result in information loss, thereby 
impeding model learning (Agrawal et al., 2015). Additionally, the intricate nature of the Combined Sampling 
process introduces complexity, making it less straightforward (Chen et al., 2020a). In summary, this study 
employs the following Oversampling methods to achieve data balance. 

Random Oversampling (ROS): Firstly, determine the multiplication factor for oversampling the minority class 
samples. Secondly, randomly select a subset of samples from the minority class and replicate these samples 
according to the multiplication factor for oversampling. Finally, merge the original minority class samples with 
the replicated ones to create a balanced dataset (Bora et al., 2022). The advantages of ROS lie in its simplicity 
and ease of implementation, without introducing complex computations or algorithms. However, in situations 
where noise is present in the minority class samples, randomly replicating samples may lead to overfitting. 

Synthetic Minority Over-sampling Technique (SMOTE): Begin by selecting a minority class sample as the 
starting point and calculating its distances to all other minority class samples. Option for a few nearest 
neighbours from this pool of samples. Randomly choose a sample from the k-nearest neighbours of the initially 
chosen minority class sample. Calculate the distance between the selected nearest neighbour sample and the base 
sample. Generate the required number of synthetic samples by randomly determining a proportion multiplied by 
this distance (Ghorbani and Ghousi, 2020). 

Support Vector Machine Synthetic Minority Over-sampling Technique (SVM-SMOTE): Start by employing 
the SMOTE algorithm to generate synthetic samples, effectively increasing the quantity of minority class 
samples. Form a classification model by training an SVM classifier with both the original and synthetic samples. 
Adjust the weights of the synthetic samples based on the error between the output of the SVM classifier and the 
actual labels. This adjustment aims to amplify the influence of synthetic samples as potential support vectors. 
Finally, retrain the SVM classifier using the re-adjusted weights of the synthetic samples and the original 
samples (Wang, 2008). SVM-SMOTE combines the advantages of SMOTE and SVM, uses SMOTE to 
synthesize samples to balance the data set, and adjusts the weights of synthesized samples by SVM classifier to 
improve the degree of attention to a few class samples. 

Borderline Synthetic Minority Over-sampling Technique (Borderline-SMOTE): Start by employing the 
SMOTE algorithm to generate synthetic samples, effectively increasing the quantity of minority class samples. 
Form a classification model by training an SVM classifier with both the original and synthetic samples. Adjust 
the weights of the synthetic samples based on the error between the output of the SVM classifier and the actual 
labels. This adjustment aims to amplify the influence of synthetic samples as potential support vectors. Finally, 
retrain the SVM classifier using the re-adjusted weights of the synthetic samples and the original samples (Han 
et al., 2005). The fundamental concept of this method is to exclusively synthesize samples positioned around 
majority class samples and in close proximity to minority class samples. These samples, considered to be on the 
decision boundary, are the focus of Borderline-SMOTE. Therefore, Borderline-SMOTE concentrates on 
generating samples closer to the class boundary to better emulate the authentic data distribution and enhance the 
model's ability to delineate category boundaries. 

KMeans Synthetic Minority Over-sampling Technique (KMeans-SMOTE): Employing the KMeans clustering 



   

algorithm, the minority class samples are classified into K clusters, with each cluster's minority class samples 
serving as the foundational samples. The SMOTE algorithm is then implemented within each cluster to produce 
the required number of new samples. The final step involves amalgamating the original minority class samples 
with the synthesized samples to establish a well-balanced dataset (Qu et al., 2020). The primary rationale behind 
this methodology lies in the clustering of minority class samples using the KMeans algorithm, followed by the 
application of the SMOTE algorithm to generate new minority class samples within each cluster. This ensures 
that the synthesized samples are more representative, while the distinctive features of the original samples are 
preserved. 

2.3. Advanced machine learning prediction models 

To ascertain the efficacy of the FSBF framework across various models, this study experimentally employs 
four distinguished machine learning models namely, GBDT, XGBoost, LightGBM, and AdaBoost that excel 
in classification tasks. Then, the Unweighted Average Recall (UAR) is utilized as the benchmark metric to assess 
the model performance. The following content provides an introduction to the models and the evaluation metric: 

Gradient Boosting Decision Trees (GBDT): GBDT falls under the category of Boosting models, combining 
decision tree models with ensemble learning techniques. By constructing multiple decision trees and 
progressively reducing prediction errors, GBDT employs gradient boosting during each training round. This 
involves calculating the gradient of the current model to determine the predicted values for the next tree (Wu et 
al., 2021). This iterative process allows the model to gradually minimize the loss function, enhancing predictive 
capabilities. Regularization techniques, such as constraining tree depth, minimum leaf node count, and learning 
rate, are applied to prevent overfitting. 

eXtreme Gradient Boosting (XGBoost): XGBoost is a highly optimized gradient boosting tree algorithm that 
employs decision trees as its fundamental model. Building upon the foundation of the GBDT algorithm, 
XGBoost introduces optimizations and innovations to enhance model performance. By iteratively training 
multiple decision trees and utilizing gradient boosting techniques during each training round, XGBoost 
calculates the gradient of the current model to determine the predicted values for the next tree (Chen and 
Guestrin, 2016). This enables XGBoost to progressively minimize the loss function while improving model 
efficiency. 

Light Gradient Boosting Machine (LightGBM): LightGBM is an efficient and powerful gradient boosting tree 
algorithm designed specifically to handle large-scale datasets and high-dimensional features. Similar to GBDT 
and XGBoost, LightGBM utilizes decision tree models. However, LightGBM introduces innovations such as the 
Gradient-based One-Side Sampling (GOSS) algorithm to reduce sample dimensions and the Exclusive Feature 
Bundling (EFB) algorithm to decrease feature dimensions (Ke et al., 2017). These advancements result in 
reduced memory usage and improved training speed. 

Adaptive Boosting (AdaBoost): AdaBoost aims to enhance the effectiveness of weak classifiers by 
amalgamating multiple classifiers with incremental focus on previously misclassified samples. This strategic 
approach results in the creation of a formidable classifier, highlighting AdaBoost's prowess in tackling complex 
problem scenarios (Cai et al., 2022). 

In the exploration of data balance analysis, this study investigates the learning impact of information from 
different categories of data. Given that Accuracy and area Under Curve (AUC) are not universally suitable for 
assessing the performance of imbalanced datasets, alternative evaluation metrics are sought for a more 
comprehensive understanding (Kim et al., 2015). Within imbalanced datasets, models may demonstrate a bias 
towards predicting the majority class with greater ease, thereby achieving high accuracy. Nevertheless, their 
performance in predicting minority classes may be inadequate. Thus, this study adopts UAR as the evaluation 
criterion (Chen et al., 2018). Designed for multi-class classification challenges, UAR functions as an evaluation 
metric by computing the recall for each class and subsequently determining the average of these recall values. 
The calculation formula is articulated as follows: 

1
cQ

ii

c

Recall
UAR

Q
,        (1) 

where cQ  is the quantity of category c, with Recall  denoting the recall rate. 
In the context of imbalanced datasets, UAR stands out as a robust evaluation metric. It maintains equal 

consideration for each category, independent of their respective sizes. The variability in UAR scores reflects the 
influence of different oversampling techniques on model performance. 



   

3. Results and analysis 

This study experimentally evaluates the combined effects of various oversampling techniques, including 
SMOTE, SVM-SMOTE, Borderline-SMOTE, KMeans-SMOTE, and ROS, with multiple classifiers (GBDT, 
XGBoost, LightGBM, AdaBoost) to address the issue of imbalanced data categories. A comprehensive analysis 
of the experimental results reveals that, on the dataset, KMeans-SMOTE performs relatively well, especially 
when combined with GBDT, yielding optimal outcomes. This offers an effective oversampling choice for 
predicting the severity of maritime accidents. These findings hold significant reference value for practical 
applications in maritime accident prediction and safety management. 

3.1.  Performance analysis of FSBF 

3.1.1. Balancing the data 

Upon observing the data before and after balancing (Table 1), it is evident that SMOTE, Borderline-SMOTE, 
SVM-SMOTE, and ROS successfully balanced severe accidents with non-severe accidents, achieving a 1:1 ratio. 
However, KMeans-SMOTE concurrently augmented the count of both severe and non-severe accidents, 
achieving a ratio of 193:192. The primary distinction in the outcomes of KMeans-SMOTE compared to other 
methods arises from its unique ability to address both inter-class and intra-class imbalances. Given the imbalance 
within the majority class samples in the sample space, KMeans-SMOTE synthesizes majority class samples to 
achieve internal balance, thereby increasing the count of majority class samples. In contrast, other methods 
predominantly focus on generating fewer but more representative synthetic samples between classes to balance 
the class quantities. 

Table 1.The changes in data before and after oversampling. 

Oversampling methods Non-serious accidents Serious accident  Total Minority proportions 

SVM-SMOTE 768 768 1536 0.5000 
Borderline-SMOTE 768 768 1536 0.5000 
KMeans-SMOTE 772 768 1540 0.4987 
SMOTE 768 768 1536 0.5000 
RandomOverSampling 768 768 1536 0.5000 
Original 768 267 1035 0.2580 

 
Upon scrutinizing the amalgamation of oversampling methods with machine learning predictive models 

(Table 2), it is evident that SMOTE variants (SMOTE, SVM-SMOTE, Borderline-SMOTE, KMeans-SMOTE) 
exhibit diverse performances across different classifiers. Notably, SMOTE and Borderline-SMOTE yield 
relatively higher UAR scores when combined with LightGBM, positively influencing predictive outcomes. 
However, their effectiveness diminishes when coupled with AdaBoost. SVM-SMOTE and KMeans-SMOTE, 
when integrated with GBDT or LightGBM, yield relatively higher UAR scores, contributing to the enhancement 
of machine learning model performance. Conversely, their combination with AdaBoost results in inferior 
performance. ROS, when combined with XGBoost, attains higher UAR scores, indicating its beneficial impact 
on improving XGBoost's performance. These findings suggest that specific combinations of these methods can 
have a positive impact on model performance in particular scenarios. 

Table 2. The average score and the highest score for each oversampling method. 

Machine learning models SMOTE SVM-SMOTE Borderline-SMOTE KMeans-SMOTE ROS Average Max 

GBDT 0.6945 0.7221 0.6879 0.7341 0.7121 0.7102 0.7341 
LightGBM 0.7143 0.7240 0.7318 0.7214 0.7065 0.7196 0.7318 
XGBoost 0.7065 0.7016 0.6938 0.7166 0.7256 0.7088 0.7256 
AdaBoost 0.6716 0.6872 0.6541 0.6966 0.7053 0.6830 0.7053 
Average 0.6967 0.7088 0.6919 0.7172 0.7124   
max 0.7143 0.7240 0.7318 0.7341 0.7256   

 
Averaging the UAR scores of each oversampling method reveals that KMeans-SMOTE achieves the highest 

average UAR score, reaching 0.7172. When combined with GBDT, KMeans-SMOTE attains the highest score of 
0.7341. By considering the clustering structure among samples, KMeans-SMOTE generates synthetic samples 
more reasonably, contributing to the diversity of the training set. This approach may positively impact the 



   

model's generalization ability, resulting in excellent performance. In contrast, Borderline-SMOTE exhibits the 
lowest score, possibly indicating suboptimal performance when handling samples near category boundaries, 
leading to lower-quality synthetic samples. This might hinder the model's ability to capture crucial features 
between categories, thereby affecting performance. The relatively high score of ROS could be attributed to the 
dataset's features and distribution, allowing simple random oversampling methods to produce favorable effects 
on model performance. 

3.1.2. Feature selection 

In this study, pre-training of feature selection stands as a pivotal step in enhancing model performance and 
reducing computational costs. This method involves the ranking of features to pinpoint those making substantial 
contributions to model performance. Experiments encompassed different feature quantities, progressively 
increasing from one feature to encompassing all features. The augmentation of feature quantity might exhibit a 
pattern of initial enhancement followed by stabilization in performance metrics. The determination of the 
optimal feature quantity, where the model attains peak performance, is facilitated by monitoring diverse 
performance indicators, as depicted in Figure 2 (on the next page). Using the combination of KMeans-SMOTE 
and GBDT that showcasing the highest UAR score, this study illustrates the features optimizing model efficacy. 
These features are ranked based on their importance, as outlined in Table 3. 

Table 3. Achieve the best feature ranking for model performance. 

Ranking Feature Ranking Feature 

1 Engine power 10 Safety system 

2 Accident type 11 Rectification of problems 

3 Ship type 12 Time at sea 

4 Time 13 Time in rank 

5 Month 14 Gross tonnage 

6 Depth draft ratio 15 Violation operation 

7 Ship age 16 Width / length 

8 Location 17 Company culture 

9 Safety management   

 
Upon analysing Table 3, it becomes apparent that prominently influential features mostly pertain to the 

vessel's inherent characteristics, accident occurrence time and type, navigational environment, company 
management factors, and human-related factors. Primarily, the vessel's inherent characteristics encompass 
features such as Engine Power, Ship Type, Depth Draft Ratio, Ship Age, Gross Tonnage, among others. These 
features are directly related to the vessel's structure, capabilities, and performance, exerting a significant impact 
on the safety of maritime navigation. Additionally, the time and type of accidents emerge as crucial factors 
determining the severity of incidents. The accident severity is also impacted by factors such as the ratio of 
fairway width to ship length, depth draft ratio, and other navigational conditions. The impact on accident severity 
extends to company management factors, specifically Safety Management, Safety System, and the Rectification 
of Problems within the shipping operating company. Lastly, human factors are one of the crucial factors 
influencing the severity of accidents. 
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Fig. 2. Changes in the UAR scores after feature selection and oversampling. 

3.2. Performance of machine learning model 

A detailed examination of the mean and maximum UAR scores (as shown in Table 4) reveals a consistent 
pattern of excellence exhibited by GBDT, XGBoost, and LightGBM  three gradient boosting decision tree 
methods that rely on residual fitting. LightGBM, with a highest average UAR score of 0.7196, particularly 
shines when paired with Borderline-SMOTE, reaching its zenith at 0.7318. Innovative technologies such as 
Exclusive Feature Bundling are employed by LightGBM, reducing feature dimensions by amalgamating discrete 
values. This plays a crucial role in enhancing the model's generalization ability, which is a key factor in 
addressing class imbalance issues. GBDT, with a stellar highest average UAR score of 0.7102, closely followed 
by XGBoost, underscores the adaptability of these methods when synergized with oversampling techniques, 
showcasing remarkable information assimilation across diverse classes. This highlights the robust nature of 
gradient boosting decision tree methods in addressing imbalanced datasets. In contrast, AdaBoost, while securing 
a comparatively lower score, continues to display a commendable ability to adapt to different data processing 
methods. This propensity might be linked to AdaBoost's sensitivity to noise, making it responsive to the nuances 



   

of imbalanced data. The ensemble learning strategy of AdaBoost could potentially contribute to overfitting on 
minority classes, influencing its performance on imbalanced datasets. 

Table 4. UAR scores of machine learning methods. 

 GBDT LightGBM XGBoost AdaBoost 

Average 0.7102 0.7196 0.7088 0.6830 

Max 0.7341 0.7318 0.7256 0.7053 

3.3. Ablation study 

The ablation study serves as a crucial tool for explicating and evaluating the contributions of individual 
modules or features within machine learning models to the overall model performance. Through the systematic 
removal or alteration of specific modules in the model, the components influencing the final outcome can be 
discerned. Employing this method facilitates a more profound understanding of the internal mechanisms and 
critical components of the model. In this instance, the ablation study involves preserving feature selection and 
oversampling methods separately, using SVM-SMOTE oversampling as an illustrative example, and gauging the 
fluctuations in model performance assessed by the UAR score derived from the AdaBoost model. The ablation 
study results are shown in Figure 3. 
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Fig. 3. UAR scores variation in ablation experiments. 

Analysing the prediction results from AdaBoost with solely retained feature selection showcases a progressive 
enhancement in UAR values, culminating in the peak UAR score of 0.6456. Contrasting this with the original 
data's UAR score of 0.6404 demonstrates a positive impact of 0.81% attributed to feature selection. Under the 
influence of feature selection, the data is comprehensively understood by the model, leading to an enhanced 
model performance. The introduction of feature selection played a pivotal role in model performance. Through 
the utilization of pre-trained feature selection, key features associated with accident severity have been 
successfully identified., encompassing vessel-specific attributes, accident time and types, navigational contexts, 
company management variables, and human-related factors. These features hold substantial significance in 
maritime operations and contribute positively to the model's efficacy. Different oversampling methods exhibited 
diverse impacts on model performance. KMeans-SMOTE outperformes other oversampling methods, securing 
the highest average Unweighted Average Recall (UAR) scores across multiple machine learning methodologies, 
affirming its remarkable proficiency in maritime accident prediction. In contrast, Borderline-SMOTE and other 
oversampling approaches might prove less effective in specific scenarios. GBDT techniques, encompassing 
GBDT, XGBoost, and LightGBM, consistently demonstrated stellar performance across diverse oversampling 
methods, with LightGBM claiming the top spot in average UAR scores. Its incorporation of innovative 
techniques significantly enhances model generalization, showcasing robust adaptability to imbalanced datasets. 



   

Through ablation experiments, the pivotal contributions of feature selection and oversampling methods to 
improved predictive performance are further underscored. Retaining feature selection or oversampling methods 
yielded appreciable performance enhancements, highlighting their effectiveness in strengthening predictive 
capabilities. 

4. Conclusion 

This study explored the predictive performance of various oversampling techniques (SMOTE, SVM-SMOTE, 
Borderline-SMOTE, KMeans-SMOTE, RandomOverSampling) combined with four machine learning methods 
(GBDT, XGBoost, LightGBM, AdaBoost) in forecasting the severity of maritime accidents. 

Through conducting experiments and analysis, this study deeply investigates the roles of feature selection and 
oversampling methods in predicting the severity of maritime accidents. The strategic combination of models and 
oversampling methods significantly enhances model performance, offering reliable predictive and decision 
support for maritime safety. Nonetheless, the study has some limitations, such as not exploring a wider array of 
machine learning or deep learning models. In future research, additional combination strategies can be explored 
to identify the optimal pairing of feature selection and oversampling. Furthermore, this study does not introduce 
advanced technologies from other domains or explore more sophisticated oversampling methods, which could 
further elevate predictive performance. Subsequent research efforts may benefit from a more nuanced and 
comprehensive approach to analyse accident data, propelling advancements in the field of maritime accident risk 
prediction. 
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