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Abstract 

The paper proposes the use of the Jenson-Shannon divergence as the distance function within the distance-based 
Approximate Bayesian computation framework. Under such framework, the distance function serves to quantify the 
difference between the observed data and the model predictions and from there, assigns higher statistical importance to model 
parameter samples which yields high degree of agreement between the model predictions and the observed model and lower 
statistical models to model parameter samples which achieve otherwise. The objective is to illustrate the feasibility of the 
Jenson-Shannon divergence towards stochastic model updating for the subsequent model calibration and validation under 
limited data. To achieve this objective, the paper is divided into two parts: the first part of the paper introduces the 
mathematical formalism of the Jenson-Shannon divergence along with a review of the adaptive-binning algorithm from the 
literature; and the second part of the paper presents a case study in the form of the 2014 NASA-LaRC Uncertainty 
Quantification challenge problem involving a black-box model with uncertain model input parameters to demonstrate the 
feasibility of the proposed framework in stochastic model updating towards model calibration and validation under limited 
data.  
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1. Introduction 

In recent years, the need for model parameter identification under uncertainty has gained significant attention. 
 input model parameter variability, and model 

incertitude (Lye and Marino, 2023d). Broadly speaking, the underlying uncertainty can be classified into two 
distinct types (K 2001): 1) Aleatory (Type I uncertainty); and 2) Epistemic (Type II 
uncertainty). Details to the respective types of uncertainty can be found in the literature by Kennedy and 

A well-known approach to quantify such uncertainties is stochastic model updating which has 
been implemented in numerous areas such as engineering reliability (Faes et al., 2021; Lye et al., 2020, 2023a), 
structural health monitoring (Lye et al., 2022b, 2023b), and model validation (Ferson et al., 2008). The latter 
would be of interest in the context of the paper. 

A key challenge in engineering is the need for credible computational models which can simulate the actual 
system of interest. This presents the necessity to develop model calibration and validation capabilities which are 
robust under limited data. In the context of the paper, calibration refers to the process of  the model 
such the model prediction matches the existing data (i.e., the training data) while validation refers to the process 
of assessing how well the model prediction agrees with a new data set (i.e., validation data).  

To perform stochastic model updating for engineering systems, Bi et al. (2018) proposed the distance-based 
Approximate Bayesian computation framework involving the Bhattacharyya distance function (Bi et al., 2018). 
Since then, other distance functions have been implemented in recent literature including the 1-Wasserstein  
(Gray et al., 2022; Lye et al., 2023a), and the Bray-Curtis (Zhao et al., 2022) distance functions. Details on each 
of these distance functions can be found in the respective reference. For the work presented in the paper, the 
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implementation of the Jenson-Shannon divergence as the distance function is proposed as the uncertainty metric 
to quantify the difference the distribution of the observed data and that of the model prediction. 

The research objectives of the paper are: 1) to present a distance-based Approximate Bayesian Computation 
framework involving the Jenson-Shannon divergence as the distance function for stochastic model updating; 2) 
to present a review of the mathematical formalism behind the Jenson-Shannon divergence; and 3) to demonstrate 
the feasibility of the proposed framework through a case study based on the recent 2014 NASA-LaRC 
Uncertainty Quantification challenge problem involving the task of calibrating and validating a black-box model 
to be calibrated under limited data. To achieve the above objectives, the paper is outlined as follows: Section 2 
reviews the Bayesian model updating framework, the concept of Approximate Bayesian Computation, and the 
Transitional Ensemble Markov Chain Monte Carlo method; Section 3 reviews the concept of the distance metric 
and that of the Jenson-Shannon divergence; Section 4 presents the 2014 NASA-LaRC Uncertainty quantification 
challenge problem along with the results and discussions of implementing the proposed framework towards 
addressing the challenge; and Section 5 summarises the contents presented in the paper and reiterates the key 
learning points before drawing the paper to a close.    

2. Bayesian model updating 

A popular approach towards stochastic model updating would be Bayesian model updating to which the 
mathematical formalism follows (Beck and Katafygiotis, 1998): 

 (1)  

where   before 
collecting data ,  is the like
data  and the prediction from model  given , and  is the evidence which ensures that the posterior 
integrates to one. Details on each of the above terms in (1) can be found in Lye (2023c) and McGurk et al. 
(2024). In general, the inferred parameter(s) can be time-invariant, or time-varying (Lye et al., 2023b). In the 
context of the paper, the focus is specifically on time-invariant parameters. 

Due to  being a numerical constant, the term itself can be neglected resulting in the posterior being 
expressed in its un-normalised form: 

 (2)  

As a result, direct Monte Carlo sampling technique becomes inapplicable and advanced Monte Carlo sampling 
techniques need to be implemented such as the Markov Chain Monte Carlo methods, Transitional Markov Chain 
Monte Carlo, and the Sequential Monte Carlo samplers (Lye et al., 2019). Detailed reviews on these sampling 
approaches are found in Lye (2023c). For the work presented in the paper, the Transitional Ensemble Markov 
Chain Monte Carlo (TEMCMC) method (Lye et al., 2022a) will be implemented. 

2.1. Transitional Ensemble Markov Chain Monte Carlo 

The TEMCMC sampler is a variant of the Transitional Markov Chain Monte Carlo (TMCMC) sampler 
developed by Ching and Chen (2007) which allows for the generation of samples from complex-shaped 
posteriors (e.g., very peaked or having multiple peaks) in an iterative manner. This is done using a series of 
intermediate functions known as transitional distributions  which is defined as: 

  (3)  

where  is the sampling iteration number,  is the tempering parameter such that 
, and  is the final iteration number. An important aspect of the sampler is the transition step 

size  which determines how gradual the transition is from the prior to the posterior and, in turn, 
how well the sample distribution converges to the posterior (Lye et al., 2023d). The optimal value of , and 
therefore the value of , is determined by solving the following optimisation problem (Ching and Chen, 2007): 

 (4)  

where  and  are the standard deviation and the mean operators respectively, and  is the 
sample index with  being the total sample size. 



   

A key advantage of the TEMCMC sampler over the TMCMC sampler is the improved sample mixing 
performance by the former owing to the implementation of the Affine-invariant Ensemble sampler (Goodman 
and Weare, 2010) as the Markov Chain Monte Carlo move kernel and the introduction of an adaptive step-size 
tuning algorithm to moderate the acceptance rate of the sampler within the optimal bounds of . 
Information to such study can be found in Lye (2023c) while details on the algorithm and conceptual 
descriptions to the TEMCMC sampler can be found in Lye et al. (2022a). 

2.2. Approximate Bayesian Computation 

As seen from (1), an important component of the Bayesian model updating procedure is the likelihood 
function . Assuming independence between the  sets observations, the full analytical likelihood 
function is defined as follows: 

 (5)  

However, in instances when the model  is computationally expensive, the evaluation of the full analytical 
likelihood function in (5) becomes almost impossible to evaluate since it requires a large amount of model 
evaluations. Such an issue becomes more pronounced with complex computational models involving a large 
number of input and output features. To overcome such issue, the Approximate Bayesian computation approach 
is implemented by substituting the full likelihood function in (5) with the distance-based approximate likelihood 
function proposed by Bi et al. (2018): 

 (6)  

where  is the distance function, while  is the width-factor serving as the pre-defined parameter controlling the 
centralisation degree of the posterior. It is proposed in Bi et al. (2018) that the width-factor should lie within the 
interval of . 

3. Jenson-Shannon divergence 

For the work presented in the paper, the Jenson-Shannon divergence is proposed as the distance metric for the 
distance-based ABC framework. The purpose of such distance metric is to quantify the statistical difference 
between the distribution of the model prediction and that of the observed data  using information entropy. To 
provide a clear conceptual understanding on the Jenson-Shannon divergence, Section 3.1 presents the 
mathematical formalism to compute the distance function, and Section 3.2 presents the mathematical properties 
of the Jenson-Shannon divergence through a simple illustrative example which also serves as a verification 
exercise on the distance function algorithm. 

3.1. Mathematical formalism 

The Jenson-Shannon divergence is based on the Kullback-Leibler divergence . Given two -dimensional 
distributions  and , the Kullback-Leibler divergence is defined as (Nielsen, 2019): 

 (7)  

where  is the total number of bins used to approximate the distributions  and . However, the 
implementation Kullback-Leibler divergence as the distance function would not be optimal for ABC for the 
following reasons: 1) it does not obey the symmetrical property (i.e., ); and 2) the 
function yields infinity in the event that the support of  is not a subset of . As such, the Jenson-Shannon 
divergence was developed to overcome such drawbacks and is defined as: 

    (8)  

In the context of ABC, the interest would be to compute  where  is the distribution of the model 
prediction while  is the distribution of the observed data. 

An important aspect in the computation of the Jenson-Shannon divergence is the computation of the 
parameter . To do this, an adaptive-binning algorithm proposed by Zhao et al. (2022) can be implemented to 
which the procedure follows (Zhao et al., 2022): 



   

1) Compute the parameter  following: 

     (9)  

where  and . Note that  is the total number of model evaluations 
corresponding to the total sample size from the posterior while  is the simulated data (i.e. model 
prediction); 

2) Compute the Euclidean distance  between  and   follwing:  

     (10)  

where   and  are the means of the simulated data and that of the observed data respectively; 
3) Compute the bin width parameter  following: 

      (11)  

4) Finally, compute the number of bins  following: 

     (12)  

As an adaptive variable, the number of bins should be bounded such that:  

 .    (13)  

3.2. Illustrative example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1. Details on the Normal distribution shape parameters each sample set. 

Sample Distribution parameters 

    

    

    

    

    

 
For the illustrative example, five distinct sample sets of size  each are considered and are denoted 

respectively as: . Each of these sample sets follow a Normal distribution to which their 
corresponding shape parameters are defined in Table 1. As an illustration, the histogram representation of the 
PDFs as well as the Empirical Cumulative Distribution Functions (ECDFs) to the respective sample set are 
presented in Figure 1. For each pair of sample sets, the Jenson-Shannon divergence will be computed and the 
numerical results are presented in Table 2.  

Fig. 1. Illustration to the PDFs and ECDFs of the different Normal distributions presented.  



   

Table 2. Details on the Normal distribution shape parameters each sample set. 

Sample set           

            

             

            

            

            

 
Based on the results in Table 2, the following properties on the Jenson-Shannon divergence are observed:  

1) there exists hard bounds on the Jenson-Shannon divergence value as it takes strictly positive values between 
 and . This is consistent with the theory of the distance function which takes a maximum value of . 

In fact, it is seen that the Jenson-Shannon divergence takes the maximum value when there exists no overlap 
between two given PDFs  e.g.,  and  sample set pairs; 2) the Jenson-Shannon divergence  
obeys the identity of indiscernibles which yields  when it computes the divergence between a pair of  
identically-distributed sample sets; 3) the Jenson-Shannon divergence possesses the symmetric property in that 

 for ; and 4) the Jenson-Shannon divergence obeys the triangle inequality  e.g., 
. Thus, this makes the Jenson-Shannon divergence a distance metric. 

4. Case study: NASA-LaRC Uncertainty Quantification challenge 2014 

The challenge revolves about a black-box subsystem which can be described by the following black-box 
model (Crespo et al., 2014): 

    (14)  

where  is the scalar output and  are the uncertain input parameters whose uncertain characteristics are 
presented in Table 3. 

Table 3. Details on the respective uncertain input parameters. 

Parameter Uncertainty model 

  Unimodal Beta:  

  Interval:    

  Uniform:    

  Normal:  (for )  

 
There are two objectives to the case study: 1) to calibrate the uncertainty models of the respective model input 

parameters  using a given set of 25 observations of  (i.e., 
uncertainty model of each input model parameter; and 2) to validate the calibrated uncertainty models of each 
model input parameter against another set of 25 observations of  not used for the calibration (i.e., validation 
data). A histogram and ECDF representations of the training, validation, and the combined (i.e., training and 
validation) data are illustrated in Figure 2. 

4.1. Bayesian model updating set-up 

The calibration of the uncertainty models associated with the model input parameters  would be done 
through Bayesian model updating and involves reducing the epistemic uncertainty of the following eight 
parameters: . Given that parameter  follows a unimodal 
Beta distribution which is parameterised by the shape parameters  and , the shape parameters can be re-
expressed in terms of  and  using the method of moments: 

    (15)  

    (16)  

This enables  and  to be updated directly during the model calibration procedure. 
 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A short-coming of the Bayesian model updating approach is its inapplicability in reducing the epistemic 

uncertainty if such uncertainty is represented as an interval. To address such short-coming, the epistemic 
intervals can be re-represented as Uniform distributions. Such approach has also been implemented by Bi et al. 
(2018) and Lye et al. (2023a). It also needs to be noted that the subsequent posterior distribution obtained can 
also be interpreted as a fuzzy set where different levels of statistical significance  (i.e., Alpha-cut 
level) would yield updated intervals of varying width. This is because only the epistemic intervals are updated 
rather than providing a distribution (i.e., a posterior distribution) over the intervals. Such interpretation has been 
implemented by Bi et al. (2019) and Lye et al. (2023a). 

For the Bayesian model updating set-up, the prior distribution for the epistemic parameters is set as a Uniform 
distribution with the corresponding bounds defined in Table 3. It is assumed here that the inferred epistemic 
parameters are independent from one another. The likelihood function is defined as per (6) with the width factor 
set as  (i.e., 8 total sampling 
iterations by the TEMCMC sampler). The total sample size of samples to be obtained by the TEMCMC sampler 
is set at  with the total realizations of the stochastic black-box model output  set at . 

4.2. Results and discussions 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2. The ECDF and histogram representations of the training, validation, and the combined data for . 

Fig. 3. The normalised PDF for each inferred parameter. Note that the black dotted line denotes the Alpha-cut level at . 



   

Fig. 4. The resulting p-box obtained from the black-box model h1 with the calibrated model inputs. 

Table 4. Results of the updated epistemic interval for the respective inferred parameter at Alpha-cut level . 

  Updated interval 

    

    

    

   

    

    

    

    

 
The resulting posterior distribution for each component of  is converted into a PDF via the Kernel density 

estimation approach with a Gaussian kernel. This is done from their respective histograms described with 
 bins for there to be sufficient resolution in the shape profile of the distribution. The resulting PDF 

obtained for each component of  is then normalised such that the peak value is one to obtain the equivalent 
fuzzy set and this is illustrated in Figure 3. From the figure, it is observed that the resulting fuzzy sets have 
multiple peaks and this can be attributed to the following two reasons (Bi et al., 2018): 1) the back-box model  
takes in multiple model inputs and returns a single scalar output. This gives rise to parameter unidentifiability 
since there could exist multiple solutions to the input to give the same model output; and 2) the training data 
used for the model calibration has a bi-model distribution profile as seen in Figure 2. Such distribution profile is 
also observed for the validation data and the combined data which suggests that such bi-modal distribution 
profile is an inherent property of the stochastic model output of . 

From the fuzzy sets in Figure 2, the resulting updated interval for each component of  is obtained at an 
alpha-cut level of . This is to provide a non-conservative estimate on each inferred parameter and to 
ensure that the resulting bounds are obtained only from one of the peaks in the case whereby the normalized PDF 
has multiple peaks. The resulting updated intervals for each of the inferred parameters are presented in Table 4. 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Using the results in Table 4, a probability box (p-box) on the stochastic model output of  is constructed 
using the double-loop Monte Carlo procedure described as follows (Rocchetta et al., 2018): Based on the 
updated intervals for the corresponding inferred parameters, an 8-dimensional hyper-rectangle is defined which 
constitutes the epistemic space. From the resulting hyper-rectangle, a set of  samples are obtained to 
ensure sufficient exploration of the epistemic space. Each realization of the  is subsequently used as inputs to 
the uncertainty models for  which, in turn, serve as inputs to . From there, a total of   
realizations of the stochastic model output from  is obtained to provide sufficient convergence on the 
distribution describing the aleatory variability on . The above procedure results in  distinct ECDFs 
constructed with  stochastic model outputs from which a p-box is obtained and illustrated in Figure 4 (Ferson 
et al., 2003; Bi et al., 2019).  



   

Fig. 5. Bar chart representation of the calibration, validation, and the validation (combined) performance statistics  
for the respective distance function. 

Based on Figure 4, it is observed that the ECDF of the training and the combined data are enclosed to a 
significant extent within the p-box while the ECDF associated with the validation data lies mostly outside the p-
box. There are two possible reasons to account for such observations: 1) the training data used to calibrate the 
uncertainty models of  is small resulting in a poor generalization on the distribution of all possible stochastic 
model outputs from ; and 2) the distribution profile of the ECDF is sensitive to the size of the sample data 
when such size is small (e.g., 25 in this case). This implies that even if the p-box can contain most of the ECDF 
associated with the training data, it may still fail to contain much of the ECDF associated with the validation data 
despite both the training and the validation data stemming from the same uncertainty model configurations for 

 as inputs to . However, when accounting for the fact that the ECDF of the combined data is still largely 
contained within the resulting p-box, it provides significant evidence that the risk-based decision on the updated 
epistemic space is sufficiently justified. 

Table 5. Results to the corresponding prediction performances by the stochastic model output of  for the respective distance function. 

Distance function Calibration Validation Validation (Combined) 

Mean Stdev. Mean Stdev. Mean Stdev. 

Jenson-Shannon, dJS              

Euclidean, dE             

Bhattacharyya, dB             

Bray-Curtis, dBC             

1-Wasserstein, dW1             

 
To quantify the calibration performance against the training data as well as the validation performance against 

both the validation and the combined data by the  stochastic model outputs by the respective distance 
function used in the Bayesian model updating procedure, the discrepancy between each  model output ECDFs 
and the ECDF of the corresponding data type is quantified using the area metric  defined as (Ferson et al., 
2008): 

    (17)  

where  is the ECDF of the data (i.e., training, validation, or combined) while  is the ECDF of the 
stochastic model output. The smaller the area , the greater the degree of agreement between the two ECDFs. 
From the procedure, a total of  values on  is obtained from which the mean and standard deviation are 
obtained. The resulting statistics relative to the training, validation, and the combined data are presented in 
Table 5. From the table, it is observed that the mean and standard deviation values on  is the smallest for the 
training data and the largest for the validation data. Such result is consistent with the observation and the 
conclusion obtained from Figure 4. 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 



   

As a further analysis, the model prediction performance by the Jenson-Shannon divergence is compared 
against that by the following distance functions: 1) Euclidean; 2) Bhattacharyya; 3) Bray-Curtis; and 4) the  
1-Wasserstein distance functions to which detailed investigations have been done by Lye et al. (2024). The 
additional numerical results are presented in Table 5 while the bar chart representation of the performance 
statistics for the corresponding distance function is presented in Figure 5. As seen from the results, the model 
calibration performance is the strongest when the Jenson-Shannon divergence is used as the distance function for 
the Approximate Bayesian computation procedure relative to the other distance functions implemented. While 
the model validation performance relative to the validation and the combined data using the Jenson-Shannon 
divergence has a comparable mean value to that of the 1-Wasserstein, it is noteworthy that the standard deviation 
of the validation performance is significantly higher in the case of the Jenson-Shannon divergence compared to 
the other four distance functions. This highlights a limitation of the Jenson-Shannon divergence in that it yields a 
less consistent model validation performance which provides an area for further investigation for future research.   

5. Conclusion 

In the paper, the Jenson-Shannon divergence is proposed as the distance metric to be implemented within the 
distance-based Approximate Bayesian computation framework for model calibration and validation under 
limited data. To provide an understanding of the proposed framework, the paper first reviews the concept of 
Bayesian model updating and the justifications for Approximate Bayesian computation. From which, the paper 
introduces the mathematics behind the Jenson-Shannon divergence and illustrated its strengths and properties as 
a distance metric through a numerical illustrative example. 

To demonstrate its feasibility, the proposed distance-based Approximate Bayesian computation framework is 
implemented on a benchmark problem based on the 2014 NASA-LaRC Uncertainty quantification challenge 
problem which involves calibrating the uncertainty model to the input variables of a black-box model and 
subsequently validating the latter under limited data. The results showed that the proposed Approximate 
Bayesian computation framework was able to achieve an acceptable calibration performance relative to the 
training data but a relatively poor validation performance relative to the validation data. When compared against 
the Euclidean, Bhattacharyya, Bray-Curtis, and the 1-Wasserstein distance functions, the Jenson-Shannon 
divergence yields the strongest calibration performance but the least consistent model validation performance 
despite having a comparable mean model validation performance to the 1-Wasserstein distance metric.  

Further works include the following: 1) making improvements to the adaptive-binning algorithm 
implemented in the paper as it was initially not developed to account for a small data-set (e.g., 25 in this case). 
This is a drawback of the current proposed framework which can have significant impact on the model 
calibration and validation results; 2) to consider the implementation of the Jenson-Shannon divergence as a 
metric for sensitivity analysis; and 3) to investigate the implementation of the proposed Approximate Bayesian 
computation framework towards a distribution-free stochastic model updating for risk analysis, model 
verification and validation.   

To allow for a better understanding of the implementation of the Jenson-Shannon divergence as well as the 
opportunity for the readers to reproduce the results presented in the paper, the MATLAB codes used in the study 
are made accessible on GitHub via: https://github.com/Adolphus8/Approximate_Bayesian_Computation.git 
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