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Abstract 

research study focuses on the handling of waste materials generated during this process.  A Bayesian network, derived from 
prior research and publicly available data, was used to analyze the complex interactions influencing waste management 
decisions.  The research study aims to contribute to the understanding of the handling of decommissioning waste materials. 
The research stresses the importance of informed decision-making to minimize environmental impact and streamline the 
handling of hazardous waste materials, ultimately contributing to a more sustainable decommissioning approach. 
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1. Introduction 

Decommissioning of offshore oil and gas installations is big business. It is estimated that the industry will 
bn over the next ten years, involving the handling of 913,618 tonnes of 

topside infrastructure (OEUK, 2022). The number of installations nearing the end of their life is increasing, and 
it is currently thought that 126 installations within the United Kingdom Continental Shelf will require 
decommissioning in the next decade (NSTA, 2022).   

The decommissioning of offshore oil and gas installations occurs when the installation is no longer 
economically viable. As it nears this stage, decisions must be made about how to progress  will it be totally 
removed, partially removed, or repurposed? The decision on its future is primarily governed by the integrity of 
the installation and the current legislation and regulations laid out by the United Kingdom government. Some 
countries allow for the installation to be used as part of a rigs-to-reef project, but this is currently not an option 
within UK waters (OSPAR, 2010).  

Once a decision is reached, production is ceased, the wells are sealed and made safe, the installation 
undergoes decommissioning. This process generates several tonnes of waste materials. Currently, there is an 
emphasis on reducing the volume of waste that is sent to landfill and encouragement to reuse or recycle materials 
wherever possible (Perks, 2012; OGA, 2015; Brady, 2022). This is written into decommissioning guidance 
within the UK and is an industry focus. Newer installations have undergone life cycle analysis as part of their 
design phase, but previously, this was not considered with older installations (Milios et al., 2019).  

The installations currently undertaking or approaching decommissioning may have changed owners, mode of 
operations, and workforce (Parente et al., 2006; Calder, 2019). These changes may have resulted in the loss of 
information or lack of knowledge sharing.  These installations may contain chemicals that have been reclassified 

erials may not be brought to light 
until decommissioning activities are well un  Anderson et al., 2018).   
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This conference paper aims to further the understanding of the handling of decommissioning waste materials 
utilising a Bayesian network (BN) to analyse the interactions between the factors that affect the handling of these 
materials.   

The aim will be met through the following objectives: 
 The creation of a Bayesian network is based on previous research conducted by the author (Ford et al, 

2023).  
 Analysis of the Bayesian network through a series of test cases.  

2. Background 

Decommissioning these installations is challenging due to the different nature of each one. The installation 
may have changed its owner, mode of operation, and workforce throughout its lifetime. With these changes, 
information concerning the materials may have been lost or failed to be passed on. This can result in incomplete 
material and equipment inventories.   

Prior to decommissioning commencing, surveys and material testing must take place, but these can often be 
inadequate and fail to identify the types and quantities of hazardous materials present. Failure to identify and 
qualify these materials can result in the improper handling of materials, the increased risk of loss of containment 
and the reduction in recycled materials. 

Decommissioning activities begin at least three years before the planned decommissioning of an installation. 
The first step is to consult with the Department for Energy Security and Net Zero to discuss the 
decommissioning programme. A decommissioning programme is required as outlined in the Petroleum Act 
1998. The decommissioning programme cannot be executed until approval has been granted by the UK 
Secretary of State. An environmental appraisal must assess the impact of the programme and consider energy 
usage and emissions. Approval is only granted once these requirements have been satisfied and it has been 
publicised for stakeholder and public consultation.  Following the completion of the decommissioning, a detailed 
close-out report must be submitted that includes seabed surveys, waste transfer receipts and findings from the 
activities.   

The UK government utilises the waste hierarchy as part of its regulations and guidance. The waste hierarchy 
is part of the European Union Waste Framework (EU, 2008)

es 
of waste are produced and must be disposed of safely. This definition of waste is implemented in England and 
Wales as part of the Environmental Protection Act 1990. Those handling controlled waste, for example, 
producers, carriers and disposers, have a duty of care to ensure that the waste is: 

 Not unlawfully disposed of. 
 Is only transferred to an authorised waste collection agency, registered carrier or licensed waste disposer. 
  (Perks, 2012). 

The most preferred option is the prevention of the production of any waste materials, but due to the nature of 
decommissioning, the age of the installations and the hazardous materials involved, this is not always possible. 
In order to prevent the production of waste, steps should be taken to reuse or extend the life of equipment and 
materials used. Any materials or equipment that may be prepared for reuse includes any material or equipment 
that will be reused for the same purpose for which they were conceived. These items are not considered waste 
but must be prepared through thorough checking, cleaning and repairing so they can be successfully reused 
without any other pre-processing. Materials that are to be recycled include the reprocessing of the materials or 
equipment to be used for other purposes. Waste that falls under the other recovery category includes any waste 
that would be used to replace other materials that are otherwise used for a particular function, for example, 
construction aggregate. If none of these options can be fulfilled and the waste cannot be recovered, then it must 
be disposed of.   

Previously, discussions with industry experts and the distribution of pairwise comparison questionnaires 
highlighted that critical factors in the decommissioning process were: 

 Reduction in costs, 
 Knowledge and best practice sharing,  
 Liability throughout the waste stream (Ford et al, 2023).  

It was anticipated that there would be an agreement between the respondents from similar backgrounds (Ford 
et al, 2023); for example, the respondents involved in the education sector would hold similar views, but this was 
not the case. Each respondent had a different level of expertise, which resulted in their different opinions of the 
importance of each factor associated with decommissioning. Although a consensus was not reached, this initial 
research highlights that each of the factors is still an essential factor of decommissioning that needs to be 



 

addressed. How this would be addressed still needs to be identified and would involve a higher level of 
discussion and involvement from industry experts, but due to the almost secretive nature of the industry and the 
reluctance to cooperate, this is not the case.   

It can be seen that for the overall goal  to select the most critical factor affecting the decommissioning 
process, the understanding of offshore regulations is vital, backing up the findings of previous research. For the 
remaining criteria, reduction in costs, understanding of liability and knowledge and best practice sharing were 
identified as critical factors.  

Cost reduction was identified as possibly due to the ongoing initiative by the North Sea Transition Authority 
(NSTA, 2022) to reduce overall costs by 25% and now by a further 10% by the end of 2028. An overall 
understanding of liability would suggest an understanding of legislation and regulations, which, in turn, would 
reduce the length and volume of waste. The ongoing issue of a lack of knowledge and best practice sharing has 
also been highlighted. It makes sense that knowledge sharing would aid the understanding of regulations.   

3. Methodology 

This research paper forms part of a larger research project being undertaken at Liverpool John Moores 
University. The initial stage of the research involved a literature review in order to identify the current issues 
within the decommissioning process and identify if any, gaps in the regulatory framework. The findings of the 
literature review (Ford et al, 2021) were then used to inform an analytical hierarchy process and the development 
of a Bayesian Network. On the completion of these stages, a conclusion would be reached, and a 
decommissioning framework would be developed. 

3.1. Probability theory 

Probability is the measure of likelihood that an event will occur.  It can be expressed as a percentage, decimal 
form or a fraction.  The probability of an event A occurring is defined as:  

 
(1)  

Probability theory is governed by the following axioms: 
Axiom 1: The probability of an event is a real number greater than or equal to zero. 

(2)  

Axiom 2: The probability that at least one of all possible outcomes of an event will occur is equal to one.   

(3)  

Axiom 3: If two events, A and B, are mutually exclusive, then the probability of either occurring is the 
probability of A occurring plus the probability of B occurring.  

(4)  

Events are considered independent if the outcome of one event does not affect the outcome of the other.  

(5)  

Events are considered dependent if the outcome of one event affects the outcome of the other.  

(6)  

 

3.2. Bayesian networks 

Bayesian networks can be used to explore relationships between key factors and find outcomes for a system 

Theorem (Neapolitan, 2004).   
Bayesian networks are constructed using nodes and links.  Nodes represent variables which can either be 

discrete or continuous.  The links between the nodes indicate causality.  Each node can be classified as a parent 
or child node.   



 

 
Fig. 1. Example of a Simple Bayesian Network. 

A simple BN is shown in Figure 1. In this example, A is a parent of the node of C and a parent node of B.  
Therefore, nodes B and C are child nodes of A.  BN can be developed by the addition of further nodes and links 
indicating their influences.   

BN represents quantitative relationships among modelled variables.  The probability distribution for each 
node is shown in a conditional probability table (CPT).  These CPTs can be used to express the relationships 
between nodes. Figure 2 illustrates the conditional probability tables for a simple BN.   

 

 
Fig. 2. Example of a Bayesian Network with Conditional Probability Tables. 

th century by Thomas Bayes (Weber and Simon, 2016). Previous 
(unconditional) probability represents the likelihood that an input parameter will be in a particular state. The 
conditional probability calculates the likelihood of the state of a parameter given the state of the input parameters 
effected.   

 7.  

 (7)  

BNs satisfy the local Markov property which states that a node is conditionally independent of its non-
decedents, given its parents. The BN uses Bayesian inference probability computation.  This inference can come 
from known probabilities or through calculation through variable elimination.  The network is solved when the 

 

3.3. Conditional probability tables 

Generating the conditional probability tables for a Bayesian network can often be the most challenging part 
of the analysis.  The aggregated priorities from the AHP analysis will be used to construct the tables for the 
nodes that correspond to the criteria and alternatives in the hierarchal structure shown in.   

When nodes have more than one parent, their probabilities can be determined using the weighted sum 
algorithm proposed by Das (2008).  This approach uses the results from the pairwise comparison and their 
relative weights.   

The example in shows a child node, C, with two parent nodes.   
 

 

Fig. 3. Simple Bayesian Network 

If the parent nodes have the same number states: 
 

 (8)   
 

The compatible states for the parent nodes are represented by: 



 

 

 (9)  
 

w  
For Figure 3, the compatible parent combination is: 
 

 (10)  
 

For child node C, the probability distribution will be: 
 

 (11)  
 

This leads to the weighted sum algorithm (Das 2008): 
 

 (12)  
 

where: l = 0, 1, ..., m and Sj = 1, 2, ..., kj 
This can be applied to the child node C show in Figure 3. 
 

3.4. Data acquisition and analysis 

The details for each node are shown in Table 1. The BN consists of 12 nodes, the data for which comes from 
a variety of sources, shown in Figure 4. If no decommissioning activities are taking place, then no further action 
is required. If decommissioning is taking place, is there a complete materials and equipment inventory available, 
and has a full survey of materials and equipment taken place? If the materials have been identified, have the 
correct  

permits for transport been applied for? If not, the consequence would be a liability event. Nodes seven and 
eight are concerned with whether the decontamination of hazardous waste equipment would take place offshore 
whilst on the installation or onshore after the equipment has been transported.  

 

 

Fig. 4. Bayesian Network. 

In the event that decontamination occurs offshore, the hazardous waste would be transported in tote tanks to 
an onshore site. If decontamination is to take place onshore, it is assumed that the equipment concerned would 
be isolated for transport. In the event of any failure or leak during transport, the consequence would be an 
environmental event. The final destination of hazardous waste is either recycling, reusing, or landfilling. The 
data for this node has been compiled from the publicly available close-out reports for completed 
decommissioning projects.  



 

Table 1. Node details for bayesian network.  

Node Name Data Source Number of states Parents 
N1  Is DECOM taking place? Yes/No Question 2 0 

N2  Is there a complete inventory? Previous Research/Expert Opinion 2 1 

N3  Has a detailed survey taken place? Previous Research/Expert Opinion 2 1 

N4  Has all the material been identified? Weighted Sum Algorithm 2 2 

N5  Have all the correct permits been applied for? Previous Research/Expert Opinion 2 1 

N6  Location of decontamination Data from Close-Out Reports 2 1 

N7  Materials Transported in Tote Tanks HSE Data 4 1 
N8  Original Containment PON1 Data 7 1 
N9 - Final Destination Data from Close-Out Reports 3 2 

E1 - Liability Event Expert Opinion 2 1 

E2 - Environmental Event Expert Opinion 2 1 

E3 - Environmental Event Expert Opinion 2 1 

3.5. Model validation and sensitivity analysis 

A Bayesian network must undergo validation to ensure that it satisfies the axioms (Loughney, 2018). The 
validation of the model provides confidence in its results. The validation process involves examining several 
different combinations and scenarios in order to highlight potential problematic areas. A three axiom based 
verification procedure was followed, which is used for partial verification of the proposed BN model (Matellini 
et al, 2013). On completion, a sensitivity analysis is carried out in order to demonstrate how sensitive the 
network output is to the variations of its inputs.   

Axiom 1: A slight increase/decrease in prior probabilities of each parent node should elicit an 
increase/decrease in the child node. For this axiom, the input of nodes N2-8 were changed by 5%, and the effect 
on the output node, N9, was noted.   It can be seen that this change in the input results in a change in the output 
node, N9, as hown in Table 2. This shows that the model satisfies axiom one as by altering the values of the 
parent nodes, the value of the child node has changed.   

Table 2. Effect of the change of prior probabilities of parent node on output node.  

 5% change in probability 

Probability of N9  N2 N3 N4 N6 N7 N8 

Recycle 32.10% 32.58% 32.34% 20.39% 33.05% 55.47% 
Reuse 0.52% 0.53% 0.53% 0.37% 0.54% 0.82% 
Landfill 67.37% 66.69% 67.13% 79.24% 66.42% 44.61% 

 
Axiom 2: The total influence magnitudes of the combination of the probability variation from (evidence) on 

the values should always be greater than one from the set of sub-evidence attributes. This is shown by the effect 
of changing the values of nodes N2-8 on the output node N9.   

Axiom 3: The total influence magnitudes of the combination of probability variation from the evidence 
should be greater than that from the set of x-y attributes. Axiom 3 requires that sub-evidence should have less 
influence on the values of a child node than evidence received from parent nodes. Parent nodes N7 and N8 are 
composed of nodes N6, N4, N3 and N2. When evidence is entered 100% into the nodes and the states of each 
node are 100%, the results are shown in the Fig. 5. It can be seen that the variation satisfies axiom 3.   

 



 

 

Fig. 5. Effect of variation of child and parent nodes. 

A sensitivity analysis was carried out in order to assess the robustness of the model. It demonstrates the 
response of a given node to the changes in values of other input nodes (Matellini et al, 2013; Loughney, 2018). 
This demonstrates whether the model is working as intended. For the sensitivity analysis, the node N9  final 
destination was examined as this was an output of the model. Knowing which nodes are most influential can 
assist in experimentation, analysis and further development of the model. Nodes which are not important could 
subsequently be discarded or replaced.  The objective was to test the sensitivity of node N9 to its input nodes. 
The sensitivity analysis was conducted using the HUGIN sensitivity wizard. Without the use of this tool, the 
sensitivity analysis would involve increasing and decreasing the states of the chosen input variables by equal 
percentages to allow for a clear comparison with the chosen output node. The sensitivity wizard in HUGIN 
requires the user to select the desired focus node and the desired input node. The state for each node is selected 
so that it would have an impact on the focus node. HUGIN calculates a sensitivity value for the node. This value 
was, in turn, inputted into an Excel spreadsheet to allow the value to be increased and decreased. The results are 
presented in Fig. 6. It can be seen that the graph produced is a straight line with a positive gradient. It also 
indicates that tote tank failure is most influential on the focus node N9  final destination. When this root node is 
increased by 5%, the focus node increases by 2%. 

 

 
 

Fig. 6. Sensitivity functions for the input nodes acting on the output node, N9  final destination. 



 

4. Results and discussion 

The focus of the model is to determine the interaction between the critical factors identified through expert 
discussions and AHP analysis completed as previous research by the author (Ford et al, 2023). The numerical 
data has been obtained from a combination of these analyses and publicly available data from the HSE and 
OPRED close-out reports.  The marginalised probabilities for each node are shown in Figure 7. Three different 
test cases were analysed to determine the influence of different parent nodes on a chosen child node.   

 

 
Fig. 7. Marginalised probabilities for each node of the BN model. 

4.1. Case 1 

This test case involves the scenario where nodes N2, N3 and N4 are in a state of 100% No, as shown in Fig. 
8. In this event, the probability of waste reaching landfills increases from 66% to 71%, and the possibility of 
waste materials being recycled decreases from 33% to 29%. This shows that in the event there is no 
comprehensive inventory present, and no detailed survey has taken place, the probability of the waste materials 
being correctly identified decreases, and more waste would be destined for landfill.   This would reduce the 
sustainability of the overall decommissioning project, increase the risk of mishandling, and lead to further 
consequences.   

 

Fig. 8. Test case 1: Nodes 2 to 4 in state100% no. 



 

4.2. Case 2 

This test case involves the scenario where nodes N2, N3, and N4 are in a state where 100% Yes. In this 
scenario, all the historical information concerning equipment and materials is present, the surveys have been 
completed to a high standard, and the waste materials present have been correctly identified.  This results in an 
increase in the probability of the waste materials being recycled or reused, ultimately increasing the 
sustainability of the overall project.   
 

Fig. 9.  Test case 2:  Nodes 1-4 in state 100% yes. 

4.3. Case 3 

This test case focuses on the failure of containment during transport. Node 7 is set to 100% catastrophic 
failure of tote tanks, as shown in Fig. 10.  The effect on the final destination node is an increase in probability of 
the waste materials reaching landfill of 66.4% to 99.8%.    

 

Fig. 10. Test Case 3: Node N7, is set to 100% catastrophic failure. 

5. Conclusion 

The Bayesian network shows that the final destination of hazardous waste materials is ultimately influenced 
by their identification. This is dependent on the historical information available and the quality of the survey and 
testing during the initial decommissioning process. It follows that if hazardous waste materials are incorrectly 



 

identified or their presence unknown, they may eventually end up in landfill instead of recycling or reuse. It also 
increases the risk of environmental or personnel accidents when the material reaches the onshore processing site.   

In conjunction with the findings of the previous research, which highlighted the issues surrounding the 
understanding of legislation, lack of knowledge sharing and the emphasis on reducing costs, this highlights the 
current issues with decommissioning occurring in the UKCS. Despite stringent legislation and regulations, there 
is still uncertainty in their understanding.   

6. Further research 

The results from the Bayesian network, alongside the findings of the previous paper, will be used to develop a 
holistic decommissioning framework that focuses on the handling of hazardous waste materials. This will be 
used by stakeholders in the decommissioning process as guidance alongside the current legislation and 
regulations.   
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