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Abstract 

In the tremendously developing field of autonomous driving (AD), it is of utmost importance that system functions are safe. 
This paper offers a method for evaluating AD sub-
of environmental settings. CARLA simulation platform is used to determine the failure rate of a lane-detecting software 
algorithm provided by CARLA itself. The approach shows that lane detection reliability depends critically on environmental 
factors, particularly on precipitation levels. Results were generated from video analysis of 180 s of autonomous driving using 
inspections for every 5 s by utilizing different failure rate definitions that considered fractions of failure observations, number 
of failure sequences, including with various minimum lengths. Failure rate per time definitions are identified which are most 
consistent, namely considering the number of failure sequences observed divided by time span length while considering 
duration times. However, better consistent with the present data is to use failure and repair rates assuming exponential failure 
and repair models. Repair time distributions from CARLA simulation were used to determine mean time to repair empirically 
for the rain levels 0%, 25%, 75% and 100%. It is found that already within 180 s of simulation the failure probability is very 
close to the asymptotic failure probability as expected from a two state Markov model. The methodologies and first results of 
the present work are deemed relevant for the development and assessment of safety-critical autonomous driving subsystems. 
It is evident that shorter inspection intervals, much longer observation intervals and more environmental scenario parameters 
could be used for Markov state space refinement or extension. It is expected that these extensions would improve the 
precision of, e.g., exponential failure rate and repair models and more advanced time-dependent failure and repair models, 
e.g. Weibull models.  
 
Keywords: CARLA simulator, autonomous driving, lane detection, object detection, Markov model, failure rate per time, failure probability, 
repair or recovey rate, safety and reliability analysis, functional safety (ISO 26262), safety of the intended functionality (SOTIF, ISO 21448), 
Markov state space expansion and contraction, urban driving scenario. 

1. Introduction 

Markov modelling and simulation for safety assessment of autonomous driving (AD) functions is a promising 
approach on system level, as it allows explainable insight in overall system availability, reliability, fail 
operational, fail safe, fail emergency, and failure behavior. However, classical Markov simulations are limited 
and challenging (Horeis et al. 2020), thus requiring extensions. One issue to overcome is the need for a 
sufficiently broad overall system definition (generalized Markov state space) that needs to include environment 
information covering street and weather scenario (street geometry and conditions, weather, time-of-the-day), 
driver and occupants, other road users as well as the technical system (sensors, hardware, software, interfaces, 
cloud services, car-to-X communication). Examples of overall Markov models for AD considering technical 
system and driver are given in (Nyberg, 2018) and considering in addition environment are given in (Satsrisakul 
2018) .  

Along with overall Markov state space definition for AD comes the insight that failure rates are in general 
time-dependent, e.g., due to aging, depend on environmental conditions, e.g., sensor performance during sun 
glare, strong rain or fog versus bright cloudy day conditions, and may be influenced by further external boundary 
conditions, e.g., varying external support services regarding location and traffic conditions, or be influenced by 
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systemic behavior, e.g., connectivity or software updating and improvement over time. Hence, classical 
homogenous Markov models are not sufficient, also inhomogeneous time dependent models do not suffice, since 
the above examples require to cover state condition-based transition models. To overcome this challenges 
requires the use of overall state space informed continuous time dependent simulations that can digest 
discontinuities or even Monte Carlo Markov models (Satsrisakul, 2018) (Horeis et al. 2020)  

. For the latter also see application examples reviewed in (Riedmaier et al. 2020) and 
regarding AD implementation in (Zhu et al. 2022). Further extension options include hierarchical semi-Markov 
processes (Mattsson 2020) and related state transition characteristics (Fenoaltea, 2022). 

Another challenge is state space explosion for realistic system resolutions requiring large computational 
resources and implying the need to scale state space, i.e. to adopt modelling resolution to avoid state space 
explosion. Options include so summarize states and to define subsystems or subfunctions for which substitute or 
ersatz Markov models are provided (Puig Walz et al. 2023). Another option is to define state space expanding 
and contracting models that preserve conservation of total probability flow as given in (Pouya and Madni, 2021) 
(Pouya and Madni, 2022) for AD operation implementation and in  for system safety 
analysis. Subsystems can also be simulated (Rinaldo and Horeis, 2020) to provide input to Markov models. 

Another main issue and the focus of the present paper is the lack of failure rate and repair data for advanced 
Markov Simulation data (Richter et al. 2023). An option is to consider very short simulation sequences and to 
use metrics form computer vision such as false positive and false negative along with scenario data to determine 
simple failure rate models from AD simulation . The present approach considers a time span 
of 3 minutes AD in a predefined city environment to assess lane detection and is based on (Padariya, 2024).  

The paper continues with section 2 describing further related research. Section 3 gives details of the 
implementation and quantitative evaluation used to compute failure and repair (recovery) rates. It also shows 
how Markov modeling can include non-ego-car factors, i.e. environmental external factors. Section 4 presents 
results, mainly different failure rates based on different definitions. Failure and repair rates from simulation are 
presented. Finally, asymptotic distributions of probabilities are determined using an elementary Markov model 
and compared with pure simulation data and discussed. Section 5 gives summary and conclusions.  

2. State of the art, gaps and own approach 

There is an increasing number of Real-world datasets. They include Cityscapes (Cordts et al. 2026) 
(Breitenstein and Fingscheidt, 2022), Berkeley DeepDrive (Xu et al. 2017), KITTI (Karlsruhe Institute of 
Technology and Toyota Technological Institute) dataset (Geiger et al. 2013), the nuTonomy scenes (nuScenes) 
dataset covering the full autonomous vehicle sensor suite: 6 cameras, 5 radars and 1 lidar, all with full 360 
degree field of view (Caesar et al. 2020) and similar data by the A*3D dataset with focus on Lidar and night 
data, and the dataset of annotated DAVIS (dynamic and active-pixel vision sensors) driving recordings (DDD17) 
(Binas et al. 2017) (Chamain et al. 2022) and DDD20 (Hu et al. 2020) focusing on human behavior have been 
widely utilized for this purpose. Data can be also collected for critical scenarios only . 

However, as argued in , CARLA (CAR Learning to Act) (Dosovitskiy et al. 2017) 
(CARLA 2024), CARLA (CAR Learning to Act) is one of the leading AD simulation environments (Huang et 
al. 2016), in particular for the urban domain (Coelho and Oliveira, 2022) and regarding sensor simulations 
(Rosique et al. 2019). It can be used instead of real world data or data acquisition for pre-assessment of safety 
and of safety of the intended functionality of AD functions. It is an open-source layer over Unreal Engine 4 (UE4) 
(El-Wajeh et al. 2022; Malik et al. 2022). It covers AD development, testing and validation (Berlincioni, 2022).  

The Operational Design Domain (ODD) is the lane detection sub-function for a credible range of 
environmental and operational factors, in particular in urban areas. Simulation options are varied over a wide 
range of parameters, including statistical generation of active road participants, i.e. spawning of objects. The 
article presents several quantitative approaches to generate failure and repair rates from CARLA simulation for 
lane detection. Focus is on different failure rate expressions and the discussion results and their comparison. 
Finally, recommendations are given regarding selection of approach for the application case Markov simulation 
with constant failure and repair rates dependent on influencing factors such as precipitation, fog, time of the 
day/sun position. 

3. Methodology and implementation details 

3.1 Failure and repair rates and mean times to X from continuous failure and repair time simulation data 

Failure rate is a measure of how often a system or component fails within a given period of time. It is expressed 
as the number of failures per unit of time, e.g. (Finkelstein, 2008) (Goble, 2010) (Rausand, 2014) (Verma et al. 



 

2016) (Birolini, 2017). Failure rate is generally used to evaluate the reliability of a system or of components, and 
to estimate the likelihood of failures in the future. 

In formal notation, failure probability of a system or component is defined as the probability at which it fails 
within a given period of time . Failure probability corresponds to the cumulative failure probability  
based on a failure probability density function (PDF) , i.e. . From this, a failure rate 

 can be computed using the reliability probability . The failure rate is the 
failure rate per time at time at time  that the system fails assuming it has not failed until time . The notation 
introduced in this text paragraph allows to define the random variable failure time  with expectation value 

. 
Assuming an exponential distribution for the failure time random variable of an AD function results in  

failure probability, approaching 1 as time increases,  
,   non-failure or reliability probability, approaching 0 as time increases,  

,   failure probability density,  

,   failure rate,  

(1)   

where failure probability increases with time and non-failure probability or reliability decreases with time.  
Using the repair rate  results in similar expressions for the repair time random variable  of an AD function 

when again assuming an exponential distribution. However, this time, repair probability increases with time and 
non-repair probability decreases with time: 

repair probability, approaching 1 as time increases,  

,   non-repair probability or probability of being not repaired, approaching 0 as 
time increases,  

,   repair probability density,  

,   repair rate. 

(2)   

Mean time to failure (MTTF) and mean time to repair (MTTR) are computed using expectation values or first 
moments of the failure and repair density, respectively, i.e. expectation values of the operation time and repair 
time random variables. Mean time to failure can also be expressed as averaging over the reliability probability. 
Mean time to repair similarly can be expressed by averaging over the non-repair probability (complement of 
repair probability). In detail:  

,    Mean time to failure,  

,   Mean time to repair.  

(3)   

For the last equality sign in the first row of (3) consider for partial integration the expression  
 using (1) and solve for  

. This can be used to compute (see (Rausand and Haugen 2020) p. 560) 

  (4)  

The last equation holds when assuming  and , which is reasonable since 
 and  can be assumed to decrease faster than  increases. In a similar way one has 

  

(5)  

as the non-repair probability vanishes in . 
In case of an exponential distribution, starting from the definition 

, using the substitution , ,   

results in . The last equality is obtained from the general integral 



 

expression with an exponential function  for  and  as , i.e.  
 (see, e.g. (Musiol et al. 1995) p. 939 and p. 946).  

Regarding simulation data, for high resolution, the following data can be assumed to be available for  
, where each point in time is marking a switch from operational to fail or from fail to 

operational while starting with operational or failed. Figure 1 shows the first case. Operation time durations 
shown are  and repair times shown are . From this the mean 
simulation-based time to failure can be computed as  

  (6)  

where the logic bracket . The simulation-based mean time to repair reads  

  (7)  

For large simulation times and a large number of failures one expects that 
. Note that the last equality in equations (6) and (7) only hold in case 

of an exponentially distributed failure and repair time as described in equations (1) and (2). Note that (6) and (7) 
can be evaluated in the same way, if the transition times have been determined from regular time-equidistant 
inspection. However, as resolution decreases the deviation between the correct version of the two equations with 
arbitrary transition points in time and equidistant points in time increases.  

 

 
Fig. 1. Markov chain with repair for autonomous lane detection starting in operational state. Green horizontal lines  

are sample operation time intervals and red horizontal lines are sample repair operation times. 

Furthermore, equations (6) and (7) assume that the failure points in time and the repair points in time can be 
determined exactly. In practice it is easier to inspect the lane or object detection system at regular short enough 
equidistant time intervals to determine if AD functionality is operational.  

3.2 CARLA simulator und lane detection algorithms used 

The CARLA simulation data used is detailed in Table 1.  

Table 1. CARLA scenario parameter option ranges used for the generation of the simulations. Based in parts on CARLA API  
(Application Programming Interface) description (Python API - CARLA Simulator 2023).  

Parameter category Parameter Value range/type 
Weather conditions Cloudiness 0 (clear) - 100 (overcast) 
 Precipitation 0 (none) - 100 (heavy) 
 Wind intensity 0 (calm) - 100 (stormy) 
 Sun azimuth (from perspective of ego 

car) 
0 - 360 degrees (position of sun in the sky) 

 Sun altitude -90 (sunrise/sunset) - 90 degrees (overhead) 
 Fog density 0 (clear) - 100 (dense fog): Chosen 0 - 0 
 Fog distance Distance in meters where fog starts to appear 
 Wetness 0 (dry) - 100 (wet) 
Lighting and time Time of day 0 - 24 (hour format) 
Traffic control Traffic light state Green, Yellow, Red 
Road geometry Lane width Varies (in meters) 
 Number of lanes Varies (in any number) 
Vehicles and traffic Vehicle types Sedan, SUV, Truck, etc. 
 Vehicle speed Varies (in km/h or mph) 
Scenarios Urban, highway, rural, etc. Custom scenarios based on the above parameters 
Town Town names (e.g., Town01, Town02, Town03, Town04, Town05, Town06, 

Town07, Town10 in CARLA) 
Pedestrians Total number of pedestrians in scenario 70; total number of pedestrians in Town05 



 

3.3 Asymptotic probabilities of being in operational and failed states using failure and repair rates 

Another elementary evaluation is to determine the asymptotic probability distribution between operational and 
failed states using assuming a two state model, where state 0 is operational state and state 1 is failed state. In this 
case we have for the probabilities of being in sate 0 and state 1, respectively (see e.g. (Rausand 2011), p. 309, 
(Gupta et al. 2015) (Duer et al. 2023)), 

  (8)  

and for asymptotically large times we find  

  
(9)  

4. Results and Discussion 

4.1. CARLA sample simulation results 

Table 2 shows sample operational and failure event of lane detection in CARLA simulation evaluated from a 
driving sequence of 180 s. 

Table 2. Failure of lane detection within CARLA for different rain intensities and road geometries. The table notes street geometry (straight, 
curve, intersection) at inspection of performance of lane detection. Inspection takes place every 5 seconds at 0 s,  

4.2. Failure and repair rates from empirical mean times to failure and repair (MTTF, MTTR) 

The mean time to failure (MTTF) for 0% rain reads according to columns 2 to 4 of Table 2 evaluating 
equation (6) for equidistant inspection times  

. (10)  

In a similar way we find subsequently according to columns 5 to 7, 



 

. (11)  

according to columns 8 to 10, 

. (12)  

and according to the last three columns, 

. (13)  

The number of failure sequences decreases monotonously from 0% rain to 100% rain. Overall, also the 
 decreases as the failure duration increases, however,  is smaller than 

.  
The mean time to repair (MTTF) for 0% rain reads according to columns 2 to 4 of Table 2 evaluating 

equation (7) for equidistant inspection times  

. (14)  

In a similar way we find subsequently according to columns 5 to 7, 

. (15)  

according to columns 8 to 10, 

. (16)  

and according to the last three columns, 

. (17)  

Overall, the number of repair intervals decreases from 0% rain to 100% rain as well the  increases as 
the non-operational intervals increase on average. Note that  is slightly greater than 

.  
Using a discrete probability density an alternative way of computing  is as follows. First, observe 

that there are 6 sequences of length 5 s, 1 sequences of length 10 s, 2 failure sequences of length 15 s, 1 sequence 
of length 20 s. Then the total number of failure sequences of lengths  is given by  

  (18)  

Now the normalization condition of the length of failure sequence distribution reads using a Riemann sum  
  (19)  

which is used to define the normalized ( ) failure sequence length (downtime length 
distribution or repair time distribution) 

Now the mean time to repair can be defined as the expectation value or first moment (see, e.g. (Skartlien and 
Oyehaug 2005) for similar expectations from discrete probability distributions) of the normalized discrete failure 
sequence length distribution  

  

  

  

(21)   

Note that the last line of (21) corresponds to the expression (7) in case the observation of the component status 
starts with operational subsystem. For example, the second last expression in last row of (22) reads, using data of 
Table 2, 

  

  

(22)  

which is consistent with the simpler mean value expression of equation (14). 

. (20) 



 

4.3. Asymptotic probability of being in an operational and in a failed sate 

From the empirical MTTFs in equations (10) to (13) and the empirical MTTRs in (14) to (17) we determine 
the asymptotic probability of being in an operational and in a failed sate using (9). The results are summarized in 
Table 3. It shows that on average  decreases and  increases with increasing rain intensities. It is 
interesting to observe that even if none of the rates or MTTX increase or decrease monotonously with respect to 
increasing rain intensities, the asymptotic probabilities for operation and fail states as well as the failure 
probability in observation interval as introduced in (23) below do.  

Table 3. Failure and repair quantities for AD lane detection dependence on rain intensity: Failure and repair (or recovery) rate per lane detec-
tion system belonging to a single car, mean time to failure (MTTF), to repair (MTTR), asymptotic operational  and failure probability 

 and probability of failure in observation interval for rain intensities 0%, 25%, 75% and 100% as computed from data of Table 2. 

Rain 
intensity 
[%] 

Failure 
rate  
[1/s] 

Repair 
rate  
[1/s] 

MTTF 
[s] 

MTTR 
[s] 

Asymptotic probability 
of being in operational 
state  [-] 

Asymptotic 
probability of being in 
failed state  [-] 

Failure  
probability  
in observation interval 

0 0.116 0.111 8.64 9.00 0.490 0.510 0.500 
25 0.143 0.078 7.00 12.8 0.354 0.646 0.638 
75 0.182 0.080 5.50 12.5 0.306 0.694 0.694 
100 0.160 0.052 6.25 19.3 0.245 0.755 0.750 

4.4. Failure and repair rates from empirical meant times to failure and repair (MTTF, MTTR) 

The observation that the failure rate is not increasing monotonously (or equivalently the MTTF is not 
decreasing monotonously) arises the question if alternative failure rate definitions can be introduced that take 
better into account that the AD lane detection system fails more often in case of strong rain. To this end in 
section 4.3 different failure rate definitions are defined in Table 4. Table 4 lists the various definitions of failure 
rates used and describes how the quantities are computed, further can be found in (Padariya 2024). 

Table 4. Failure rate per time definitions for AD lane detection system. The table gives short name, short description and how to determine 
the quantity from observational data in case of equidistant health status inspection of lane detection as given in the example Table 2. 

Short name Description Example computation 
Failure probability in total observation time 
per time 

Determine total length of intervals with 
failure and divide twice by total 
observation interval length 

See text along with equation (23) and its 
discussion 

Failure rate for the failure observations at 
inspection 

Number of observed failures at inspection 
divided by observation time 

Number of black crosses in Table 2 divided 
by 180 s 

Failure rate for the failure sequences 
observed 

Number of failure sequences without 
interruption divided by time interval 

As above using number of red crosses.  

Failure rate for the failure sequences with 
up to 3 crosses 

As above but start to count as new failure 
sequence if longer than 3 observations 

As above using number of blue crosses. 

Failure rate for the failure sequences with 
up to 2 crosses 

As above but count as new sequence as 
soon as longer than 2 observations 

As above using number of violet crosses. 

Failure rate for the failure sequences with 2 
crosses 

As above but do not count single remaining 
failure observations, e.g. failure sequence 
of 3 observations is counted as 1 failure 
sequence 

As above using number of orange crosses. 

 
The failure probability (in observation time) per observation time of the second row of Table 4 is defined as 

 

  

      

      =   

(23)  

 

where we introduced  inspection intervals , their lengths, start time  and end time of inspections , 
and ordered inspection times  which are at the center or at least within the 
respective inspection intervals. For instance, for 0% rain we find with the help of the second to the fourth column 
of Table 2, see also corresponding entry in Table 4. 

   

 = = 2.78E-3 s-1. 

(24)  



 

The quantities introduced in Table 4 are computed from CARLA lane detection inspection raw data of Table 
2 in Table 5. It can be seen in Table 5 that the failure probability within the observed time interval divided by the 
time observed, the failure rate for failure observations at inspection, the failure rate for failure sequences with up 
to 2 crosses (i.e. starting to count a new failure sequence if failure sequence is longer than 2 observations or 10 
s), and the failure rate for failure sequences with 10 s increase monotonously as expected with higher rain 
intensities. However, the failure rate for the failure rate for failure sequences observed and the failure sequences 
with up to 3 crosses (or 15 s duration) do not increase monotonously with increasing rain intensity.  

When comparing failure rate values with failure rates from MTTF computations as given in Table 3, see last 
line of Table 5, we observe that none of the alternative proposed definitions exhibits a similar behavior. Note 
that the failure rates that re-start counting failure sequences incorporate the assumption that lane detection failure 
becomes again critical if duration is longer than some critical duration. This assumption is not incorporated in 
the 2 state Markov model considering failure and repair rates used for the asymptotic operational and failure 
probability computations of Table 3.  

Table 5. Lane detection failure rate results for different failure rate per time definitions  
depending on the duration of the downtime using definitions of Table 4. 

 Rain intensity [%] 
Failure rate type 0 25 75 100 
Failure probability over time observed [1/s] 2.78E-3 3.54E-3 3.86E-3 4.17E-3 
Failure rate for failure observations at inspection [1/s] 1.00E-1 1.28E-1 1.38E-1 1.50E-1 
Failure rate for failure sequences observed [1/s] 5.60E-2 5.00E-2 5.00E-2 3.80E-2 
Failure rate for failure sequences with up to 3 crosses [1/s] 6.10E-2 6.10E-2 8.90E-2 6.70E-2 
Failure rate for failure sequences with up to 2 crosses [1/s] 5.60E-2 6.10E-2 6.70E-2 7.30E-2 
Failure rate for failure sequences with 2 crosses [1/s] 2.20E-2 2.70E-2 5.00E-2 6.20E-2 
Failure rate (from MTTF computation) [1/s] 1.16E-1 1.43E-1 1.82E-1 1.60E-1 

 
The findings imply that even simple analytical methods like Failure Mode and Effects and Diagnostics 

Analysis (FMEDA, e.g. ), Fault Tree Analysis (FTA, e.g. ), Hazard Analysis (HA, 
e.g ), failure rate prediction (e.g. ) require as background model at least classical 
application domain specific constant failure rate and repair models, failure models only are not sufficient. AD 
simulations like CARLA offer a variety of functionalities including the modeling of subfunctions of AD 
including detection, classification, identification, and tracking of persons, objects and road elements, route 
planning, and maneuver planning. All of these functionalities operate at high resolution level regarding scenario 
details such as conditions of weather, daytime, road type, traffic conditions, etc. In contrast, analytical safety 
assessments operate at an abstract level in terms of failures per time or conditional failure rates such as failure of 
object detection given certain weather or daytime conditions. The approach presented shows that simulation 
results can be summarized in failure and repair models using constant rates only.  

5. Conclusions 

The evaluation of autonomous vehicles' safety is key for their use on public roads. It is difficult because of 
their advanced technology and complexity, still limited real-world usage, and the manufacturers' reluctance to 
share failure data and their assessment. This motivates ongoing research efforts regarding safety evaluation 
processes and methods. The paper uses CARLA simulation to estimate failure and repair or recovery rates for 
the sample AD autonomous subsystem lane detection.  

Using the CARLA simulator, it was possible to create realistic driving situations for highway scenarios that 
were altered and recreated in different scenario variations. The focus was on the influence of rain/precipitation 
intensity while assuming no fog but allowing for different times of the day and sun position angles. The CARLA 
simulator generated a driving route through a selected city map (Town05) for a given rain percentage (0% to 
100%) and with fog density zero. CARLA varied itself time of the day, spawned vehicles for a set number of 
vehicles in the scenario (100 vehicles in total), number of pedestrians in the scenario (70 pedestrians in total), 
and some more settings (see more settings in Table 1).  

The simulator covered 30 minutes but for the manual inspection of data for evaluation only 3 minutes were 
selected due to necessary effort. 
detection status was assessed creating operational and fail assessments. Thus, for the 180 s driving and one rain 
intensity 37 inspection values were generated. In total 4 rain intensities were considered: 0%, 25%, 75% and 
100%, as the change in the middle was found to be rather small. In this way in total 37 4 = 148 inspection values 
were generated.  



 

In total 6 different types of failure rates per time were defined and evaluated for all rain intensities. The resulting 
failure rates showed that all failure rates increased monotonously when moving from 0%, to 25% and 75% rain 
intensity. However, definitions that did not account for counting more failure in case of long failure sequences 
generated decreasing failure rates when moving from 75% rain to 100 % rain intensity. This is interpreted as an 
effect of the increasing length of the failure sequences while their number decreases.  

This shows that the complete modeling needs to consider both failure duration and failure repair times. They 
were estimated from empirical failure and repair duration times assuming constant rates for each rain intensity, 
i.e. exponential distributions. The interesting observation is that even if failure and repair rates themselves are 
not consistent, when combining them to a simple 2 state Markov model, the asymptotic probabilities of being in 
an operational state or in a failed state are consistent with the expectations, as they decrease and increase 
monotonously, respectively. They also nicely fit to the observed probability of being in a failed state and its 
complement. In summary, at least constant failure rate models for different rain intensities for failure and repair 
modelling are necessary for consistent interpretation of simulated lane detection failures within CARLA 
simulator.  

More straightforward improvements of the present work include to consider in addition rain intensities of 
50%, to reduce inspection time to the range of a fraction of seconds, e.g. 0.1 s, and to consider longer simulation 
times much beyond 1 h. Furthermore, the restriction to exponential distribution could be lifted, e.g. using 
Weibull or Pareto distributions for failure and repair or recovery modelling of lane detection. The present 
approach could also be applied to the effect of fog as well as to the effect of time of the day. Detection of grade 
of failure could be automated to replace need for human inspection, e.g. using as training data the human failure 
classifications. It is also worth noting that with the help of computed failure rates, the need for further resolution 
could be determined either directly by inspection of the magnitude of the failure rates (should be below certain 
thresholds) and repair rates (should be above certain thresholds), i.e. resulting subsequently in rates of the 
following form  
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