

Advances in Reliability, Safety and Security, Part 10
ISBN 978-83-68136-22-7 (printed), ISBN 978-83-68136-09-8 (electronic)

Failure Rates Per Time For Autonomous Driving Safety
Assessment From CARLA Simulation

a, Nikhilesh Sandelab, Rachana Padariyac, Georg Vogelbachera,
a, Alexander Richtera a,

Aishvarya K. Jaina, Konstantin Kirchheimd

aFranhofer EMI, Freiburg, Germany
bWork done at Fraunhofer EMI, current affiliation: University Magedburg

cWork done at Fraunhofer EMI, M
dInstiture for Intelligent Cooperating Systems, Ott

Abstract

Autonomous Driving simulations like CARLA offer a variety of functionalities including the modeling of subfunctions of
autonomous driving such as detection, classification, identification, and tracking of persons, objects and road elements, route
planning, and maneuver planning. All of these functionalities operate at high resolution level regarding scenario details such
as conditions of weather, daytime, road type, traffic conditions, etc. In contrast, analytical safety assessments like functional
Failure Mode and Effects Analysis (FMEA), Fault Tree Analysis (FTA) or Markov modelling and simulation operate at an
abstract level in terms of failures per time or conditional failure rates such as failure of object detection given certain weather
or daytime conditions. Furthermore, simulation options can be varied over a wide range of parameters and scenario types,
including statistical generation of scenarios and active road participants, i.e. spawning of objects. The article presents a
quantitative approach to generate failure rates per hour from CARLA simulation for object detection under a range of
environmental conditions in terms of precipitation intensity, fog density, and time of the day, single and in combination.
Focus is on the derivation of failure rate expressions that are accessible from simulation data. To this end computer vision
metrics are used together with additional information available within simulation setup to compute failure rates per hour.
Results are presented using sample tables, box plot and violin graphs. The CARLA simulator is used to assess an object
detection algorithm that has been fine-tuned with CARLA sample images. It is discussed why the obtained failure rates are
consistent but rather high. Further improvement options of the overall approach are provided.

Keywords: Autonomous driving, CARLA simulation, failure rate per time, object detection, quantification, computer vision metrics

1. Introduction

Analytical approaches on autonomous driving (AD) system or functional level such as Failure mode and
effects analysis (FMEA), Fault Tree Analysis (FTA) and advanced Markov simulation require as input failure
rate data, potentially depending on scenario data, time and mission history. However, such data on the failure
rate is only available to a very limited extent in the open scientific literature (Richter et al., 2023). For instance,
in Markov simulation modeling mainly informed guess rates are assumed (Althoff and Mergel, 2011; Nyberg,
2018; Kaalen, Nyberg and Bondesson, 2019; , 2022, 2023).

The present paper uses simulations within CARLA environment to determine failure rates for adverse
environmental conditions. The approach uses short sequences of driving at a crossing setting for the assessment
of object detection (Sandela, 2023). The aim is to estimate failure per time of the detection, identification and
classification mechanisms. Note that this is different from existing approaches using CARLA that focus on
standard computer vision evaluation metrics, e.g. in terms of false negative and positive rates for lane detection
(Jeon et al., 2022), comparison of metrics (Schreier et al., 2023), robustness of object segmentation (Thirugnana
et al., 2023), or conduct overall black box testing of AD systems (Norden, O'Kelly, and Sinha 2019).

ESREL 2024
Monograph Book Series

The paper is organized as follows. Section 2 reviews further related literature showing that simulation-based
failure assessments focus on the determination of metrics as known from computer vision. Section 3 details the
present approach that tries to include scenario information. Section 4 presents mainly tabular simulation results
showing that the open source fine-tuned object detection algorithms, result in rather high failure rates per time.
Section 5 draws conclusions and proposes further work options.

2. State of the art, gaps addressed and approach overview

There has been a growing emphasis on the use of synthetic datasets and scenario simulation for the validation
of safety and reliability in autonomous driving (AD) research. Also real-world data sets are increasingly used,
see e.g. (Feng et al., 2021; Karangwa, Liu, and Zeng, 2023) for an overview. However, their limitations in
capturing all possible scenarios and complexities faced by autonomous vehicles (AVs) have led researchers to
explore alternative approaches. Synthetic datasets generated through scenario simulation, particularly in the
popular simulator CARLA (Dosovitskiy et al., 2017; CARLA, 2024), offer a controlled and diverse environment
for testing and evaluating AD algorithms. By leveraging synthetic datasets, researchers can assess the
performance and reliability of AVs under various environmental conditions and encounter corner cases and edge
cases that may not be present in real-world datasets.

The review paper (Niranjan, VinayKarthik and Mohana, 2021) highlights the effectiveness of CARLA
simulator for training and testing object detection algorithms in AD. CARLA's open-source nature and realistic
environment modeling provide advantages over other simulators. The paper discusses successful
implementations of advanced algorithms and ongoing developments in 3D object detection, edge-based
frameworks, and LiDAR detection. It also highlights the potential of simulation in AD research. Likewise, (Nalic
et al., 2021) is a review of scenario simulation for AD, highlighting the importance of these approaches for
evaluating the performance of AVs under different conditions.

Other AD scenario simulation frameworks include RRADS (Real Road Autonomous Driving Simulation)
(Baltodano et al., 2015), TORCS (The Open Racing Car Simulator) (Wymann et al., 2014; TORCS, 2024),
Udacity Self-driving Car Simulator (UNITY) (Lade et al., 2021; Kulshrestha, 2024), Microsoft AirSim (Stubbs,
2024; Yao et al., 2018), Autoware (Autoware, 2024; Miura et al., 2019), SVL (SVL, 2024) (Seymour, Ho and
Luu, 2021), LGSVL Simulator (Rong et al., 2020), and Gazebo (Koenig and Howard, 2004; AbdelHamed,
Tewolde and Kwon 2020). Among these, CARLA stands out as a preferred choice for AD scenario simulation,
see the reviews (Kaur et al., 2020; Cai et al., 2022; Coelho and Oliveira, 2022; Ren and Xia, 2023). It offers a
wide range of features including realistic urban environments, dynamic traffic patterns, and accurate vehicle and
sensor models. CARLA's ability to generate synthetic data enables efficient training and testing of ML models.
Its comprehensive and customizable environment allows for the generation of diverse scenarios, making it
suitable for evaluating AD systems in various conditions. Furthermore, CARLA is open-source and provides an
extensive documentation. CARLA is often preferred for research and development of AD due to its high level of
realism, representativeness and flexibility.

Operational Design Domain (ODD) specifications of an AD system encompass various factors such as
environmental conditions (e.g., weather, lighting/time of the day), driving conditions such as road and traffic
conditions (e.g., types of roads, intersections), geographical constraints, speed limits, traffic rules, presence of
pedestrians and other vehicles, functional limitations, and other relevant aspects of the operational environment.
These factors and conditions define the overall operational capabilities and limitations of the entire system. The
present aim is to identify critical scenario factors and determine their impact on time-dependent failure rates,
both individually and in combination, using CARLA simulation.

3. Methodology and implementation details

3.1. CARLA Simulation

Basics of scenario simulation include a taxonomy of scenario suitable for scenario description (Weber et al.,
2019): functional, logical, and concrete. Functional scenarios are high-level descriptions of driving situations,
while logical scenarios describe specific sequences of events, and concrete scenarios are detailed descriptions of
a specific environment and the interactions within it. For scenario simulation, functional scenarios can be used to
describe the general driving environment and goals of the AD system (e.g., driving safely in a variety of
conditions), logical scenarios to provide more detail about how the system processes sensor data and makes

decisions, and concrete scenarios to provide specific examples of how the system performs in particular
situations (e.g., avoiding a pedestrian in low visibility conditions).

In the following, scenario description encompasses scenario characteristics or elements that refer to the
features and attributes of a scenario that are relevant for testing the behavior and performance of an autonomous
system. These characteristics include factors such as weather conditions, time of day, road layout, traffic density,
and the behavior of other road users.

CARLA (CAR Learning to Act) is a high-fidelity urban driving simulation environment, developed as an
open-source layer over Unreal Engine 4 (UE4) (El-Wajeh, Hatton and Lee, 2022; Malik, Khan and El-Sayed,
2022). It is primarily intended for autonomous driving development, testing and validation (Berlincioni, 2022).
In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings,
vehicles). It supports flexible specification of sensor suites and environmental conditions. CARLA is
used to generate AD scenarios, related camera images, i.e., rendered sequence of video frames, along with
corresponding segmented ground truth data.

CARLA has two core modules: the simulator and the Python API and allow users to control the simulations
via its API. It provides users with simulated sensor and camera data which can be used to train object detection
models or reinforcement learning algorithms to realize autonomous driving. For the purpose of evaluating AD
object detection performance. In the present approach sample object data is generated for fine-tuning of an object
detection algorithm. Furthermore, the self-driving algorithm is used to generate these images and to generate test
scenarios.

3.2. Failure rate per time estimation of object detection system from CARLA simulation for AD

Failure rate is a measure of how often a system or component fails within a given period of time. It is
expressed as the number of failures per unit of time, e.g. (Verma, Ajit and Karanki, 2016; Birolini, 2017; ,
2021b). Failure rate is generally used to evaluate the reliability of a system or components, and to estimate the
likelihood of future failures.

To start from the first principles, the failure probability of a (sub) system is defined as the probability at which
it fails within a given period of time . This corresponds to the cumulative failure probability based on
a failure probability density function (PDF) . This assumes that a system fails only once.

From this, a failure rate , can be computed assuming an underlying distribution. An
exponential distribution results in . This exponential failure rate gives the frequency (in units
per time) that a system fails assuming it has survived until time . We assume that there is a constant failure rate
for given combination types of environmental conditions (or factors) such as rain and fog intensity, or time of the
day.
 In the case of software dominated object detection, it can be assumed that the object detection system

i.e. without changes. Thus, the number of failures within an
observational time interval are aggregated to obtain an average failure rate per time

 (1)

In order to estimate the failure rate of the AD object detection algorithm, first, it is important to understand
what constitutes a failure of the detection algorithm. In the context of AD object detection, failure rate could be
defined as the frequency with which the algorithm fails to detect objects in its environment. Failure of the
detection algorithm can happen because of the underlying failure modes (types of failures, e.g. as distinguished
in FMEA , 2021a)). Essentially, they can occur in three basic ways:

1) - fails to identify an object that
is actually present, see e.g. (Rottmann et al., 2020).

2) -
when it is actually not there, see e.g. (Rottmann et al., 2020; Buhler et al., 2020).

3) Out-of-distribution (OoD) (Cui and Wang, 2022) errors occur when the algorithm encounters an object or
situation that it has not been trained to detect, and is therefore unable to accurately classify. Typical
examples could be: novelties, anomalies, corner cases.

In a simulated environment, it can be assumed that there are likely no inherent OoD errors, since the
simulation is customized by the users themselves, and there is usually a well-defined and limited set of possible
inputs. Therefore, it is less likely for OoD errors to occur during data generation or performance evaluation
within a simulated environment. Hence, for the computation of the failure rate within a simulation environment,
it is sufficient to consider the number of false negative (FN) and of false positive (FP) errors occurred in the

simulation. In addition, using the total simulation time corresponding to real time simulated, the failure rate
reads

 (2)

Failure rate per time could be, e.g., per second, per hour, or per year.
Furthermore, in the context of AD object detection, compared to FPs, FNs could potentially lead to higher

critical consequences, such as missing pedestrians, vehicles, or other obstacles that could result in accidents.
Thus, assuming FPs are of a lesser concern compared to FNs, they are assumed to be negligible, as argued also
in (Aravantinos and Schlicht, 2020). Therefore, focusing specifically on FNs, and ignoring the potential impact
of FPs, a non-conservative simplification of (2) reads

 (3)

In order to estimate the failure rate, we use the False Negative Rate (FNR), , resulting in
, where is the number of positives. Additionally, defining the total simulation time as , (3)

updates to

 (4)

Equation (4) can be assumed to give the failure rate for a single simulation. When average values and
are used resulting from simulation runs with an average duration of , one has

 (5)

Furthermore, we consider the difference in the time scales in simulation and real-world, accounting for the
simulation time-step size, see e.g. (Zapridou, Bartocci and Katsaros, 2020). We use CARLA configuration

- -step corresponds to . Accordingly, for
computing the failure rate per time, the average simulation time, can be written as where

- is the average number of simulation steps. Now, updating (5) in terms
of average number of simulation steps reads

 (6)

Therefore, for a single simulation run (i.e.,) and without averaging,

 (7)

where - . Equation (7) is the final equation for estimating the
failure rate per time of the object detection system for a single simulation run.

3.3. Object detection algorithm

For the object detection task, a pre-trained model is used as a starting point for fine-tuning on the custom
dataset, rather than training it from scratch (Sandela, 2023). The pre-trained model fasterrcnn_resnet50_fpn of
the TorchVision Model zoo (PyTorch, 2024b) is selected since the requirement is only to draw bounding boxes
around the detected objects. Furthermore, the pre-trained model needs to be adapted to the custom dataset for
fine-tuning. In this case, the entire model needs to be re-trained, as the custom dataset is different from the pre-
trained dataset, making it more effective for the custom object detection task. This means updating all the
parameters of the model, not just the last few layers. The pre-trained model can be modified in two ways: either
by changing the backbone, or by adding a new head (classifier) with the appropriate number of output classes,
i.e., a resnet50 backbone and a FastRCNNPredictor head. The latter option is chosen (PyTorch, 2024a).

4. Results and discussion

4.1. CARLA sample simulation results

Figure 1 shows the implementation results on test dataset: one scenario out of 450 scenarios with variations of
environment factors, with original RGB color image (left) and corresponding segmentation ground truth (right).

Table 1 lists a sample record of the results of representative AD object detection performance evaluation under
the influence of a range of environment factors. Object detection metric used are for average precision (AP), and
similarly for average recall (AR):

 mAP: This is the standard mean average precision (mAP) metric calculated over all classes and
intersection over union (IoU) thresholds for all object sizes, see e.g. (Padilla, Netto, and Da Silva 2020).

 mAP_50 and mAP_75: are the mAP with an IoU threshold of 0.5=50% and 0.75, respectively.
 mAP_small, mAP_medium, mAP_large: They give the mAP of the model on small, medium, and large

objects, respectively. The size categories are usually defined based on the relative object's area in the
image.

Table 1 displays cells highlighted in red (fog_density=100, sun_altitude_angle=90, precipitation=100)
indicating the most challenging environmental conditions where there is high precipitation, a high sun altitude
angle, and high fog density, suggesting a strong impact on the model's performance, evident from the lowest
value of mAP= 0.04763. Likewise, the cells highlighted in green (fog_density=0, sun_altitude_angle=0,
precipitation=0) indicating normal or optimal environmental conditions, having the highest value of mAP=
0.33665. It can also be seen that, while object localization metrics mAR_1 is significantly lower, the mAP_small
and mAR_small are totally zero under challenging conditions, signifying their impact on the model performance.
This suggests that the challenging conditions of high fog density, high sun altitude angle, and high precipitation
have a detrimental impact on the model's performance. The combined effect of these factors hampers the model's
ability to accurately detect objects leading to lower performance across multiple metrics.

On the other hand, the normal conditions of least fog density, low sun altitude angle, and no precipitation
have a more favorable effect on the model's performance. Therefore, the model is able to perform better,
resulting in higher performance metrics in these conditions. Overall, the given conditions exhibit strong
differences in the performance metrics for object detection and localization.

4.2. Metric analysis using violin plots

Figure 2 shows three violin plots comparing the distribution of model performance (mAP) across different
levels of the environmental factors: fog density, precipitation, and sun altitude angle. It allows to analyze the
aggregated impact of these factors and understand how they collectively influence the performance.

The violin plot of mAP vs. fog density on the left illustrates the combined effect of multiple factors across
different levels of fog density on the performance. The levels of fog density ranging from 0 to 100. Each violin
has the information of 90 simulations i.e. a combination of 5 levels of precipitation, 3 different positions of sun
each, and 6 pedestrian models, with a particular value of fog density, resulting in 90 combinations

Table 1. A sample of data (14 rows out of 450 rows of raw data) showing the results of the performance evaluation
of object detection model using standard evaluation metrics.

Fig. 1. Final evaluation results of the object detection performance on test dataset (on 1 scenario out of 450 variations of
environment factors), with original RGB color image (a) and corresponding segmentation ground truth (b).

a) b)

(). Likewise, each violin contains the combined influence of other environmental factors of
precipitation, sun altitude angle and pedestrian models alongside a particular level of fog density. i.e., it
represents the combined influence of multiple factors, not just the isolated effect of fog density. As can be seen,
the performance exhibits a wide range of distribution, as the plots demonstrate distinct patterns for different
levels of fog density. Also, there is a clear difference in the distribution of mAP values between the lowest and
highest levels of fog density. Additionally, the performance is rather lower at higher levels of fog density, with a
wider distribution of values. At lower levels of fog density, the performance is clearly higher and more tightly
clustered. Overall, this suggests that the performance is significantly affected by the influence of fog density, in
combination with other factors, resulting in a range of outcomes across different scenarios.

The violin plot in the center shows the distribution of mAP values across different levels of precipitation. It
can be seen that there is no clear trend in the distribution of mAP values across different levels of precipitation.
In this case, each violin is again an outcome of 90 combinations (). As can be seen, the mAP
values appear to be relatively evenly distributed across the different levels of precipitation, with a larger range of
mAP values for lower levels and a smaller one for higher levels of precipitation. Overall, the performance is
relatively consistent across different precipitation levels.

The violin plot on the right shows the distribution of mAP vs. sun altitude angle, with midday (90) being the
most challenging condition and sunset (0) and night (-60) showing a similar trend with a relatively less
influence on the performance. In the plot of mAP vs. sun altitude angle of 90 , the violin contains the combined
influence of multiple environmental factors of fog density, precipitation, alongside sun altitude angle of 90 on
the performance, i.e., it represents again the combined influence of multiple factors, not just the isolated effect of
sun altitude angle of 90 . Accordingly, each violin contains the information of 150 simulations (

). As can be seen, the violin plot corresponding to sun altitude angle of 90 reveals that the mAP values have
a wider spread and lower median compared to the other positions of sun. Surprisingly, the performance is lower
during the midday, compared to other times of day, with a broader distribution of values. This indicates that
when the sun is at its highest point in the sky during midday, the model's performance is adversely affected. The
sun glare at this angle due to strong sun during midday might introduce challenges in object detection, or smaller
shadows that cannot be well separated from object shapes leading to lower mAP values. Despite the optimal
lighting conditions, the combined effect of the sun altitude angle of 90 with other factors seems to negatively
impact the model's performance.

4.3. Failure rate analysis

Table 3 shows the results of the failure rate estimation of object detection system under challenging
environmental conditions. It shows the False Negative Rate (FNR) and failure rate values corresponding to the
most challenging 36 scenarios out of a total 450 scenarios. They are classified based on their level of influence
on the system as discussed in Section 4.2.

In order to illustrate the estimation of failure rate, a sample computation is done for one scenario using (7)
with for simulation run 2 from Table 2 below, , and as in Table 1. Number of
simulation steps and

Fig. 2. Violin plots comparing the influence of different environment factors on the detection performance. The plots from left to right
illustrate: mAP vs. Fog density, mAP vs. Precipitation and mAP vs. Sun altitude angle, respectively.

In Table 2, the lowest failure rates (around 880) are observed in scenarios 2 and 14, under fog density
level of 50, precipitation level of 75, and midday sun angle. These scenarios seem to have the most favorable
conditions for object detection, despite the presence of fog. Likewise, scenarios 3, 29, and 31 also exhibit
relatively low failure rates, suggesting a reasonable performance. In contrast, the highest failure rates (ranging
around 1210 to 1220) are observed in scenarios 21 and 27. These scenarios represent the most
challenging conditions with highest levels of fog density and precipitation. The remaining scenarios fall within
the intermediate range of failure rates, demonstrating varying degrees of performance under different
combinations of fog density, precipitation, and sun angle.

Figure 3 illustrates box plots (left) and a corresponding violin plots (right) comparing failure rate of object

detection system under normal and challenging environmental conditions.
In Figure 3, the failure rates for challenging scenarios are higher and more concentrated in a narrower range

compared to normal scenarios. The median failure rate under challenging environmental conditions is
significantly higher, by a factor of ca. 1.6 with a tightly spread interquartile range (IQR), which encompasses the
middle 50% of the data, compared to that under normal conditions. As expected from discussion along with
Figure 2, the object detection algorithm is more likely to fail when it is exposed to challenging conditions such
as extreme rain, dense fog, and midday conditions. Furthermore, the presence of a positive outlier further
emphasizes variability of detection under challenging scenarios.

Table 2. Results of failure rate estimation of object detection system under challenging environmental conditions.

In contrast, the wider IQR and larger overall range with much lower minimum but only marginally lower
maximum failure rate values under normal conditions in Figure 3
variable under normal conditions. The improvement is favorable in terms of detecting objects under these
conditions. However, the occurrence of high failure rates for a lot of scenarios suggests much room for
improvement.

5. Conclusions

On the whole, as expected, the comparison between failure rates under different environmental conditions
clearly demonstrates that the object detection system faces more difficulties and exhibits less reliable
performance in challenging environmental characterized by extreme rain, dense fog, and midday conditions.
This underscores the need to address the challenges posed by these factors in order to enhance the robustness and
reliability of the object detection system in challenging environmental scenarios.

Furthermore, the overall very high failure rates observed in the simulation environment emphasize that it is
important to understand and improve the current object detection
and strategies could be targeted towards refining algorithms, adjusting sensor configurations, or incorporating
advanced sensor technologies to enhance the system's robustness in challenging scenarios to help improve the
existing systems. Also, it is important to validate the performance of the object detection system in real-world
conditions, given that the environmental factors have a much broader variation and exhibit different patterns and
distributions in real-world.

One major factor contributing to the high failure rates is the insufficient training of the object detection
algorithm for specific objects as well as specific environmental conditions (fog, rain and midday). Furthermore,
the algorithm does not consider the distance of objects as well as whether they are on road or close to a road. It
also conducts an assessment per image only. Although these limitations are not critical in terms of the validity of
the methodology, they strongly impact the accuracy of failure rate estimates negatively since it is tested if all
objects are detected. This explains why the estimated failure rates consistently fall in a high order of magnitude
().

The simulation results reveal that a considerable number of objects, both static and dynamic, remain
undetected within the given time frame. These findings align with the low mean average precision (mAP), which
is less than for the very challenging conditions. The low mAP further supports the observation of high
failure rates based on false negative rates (FNR) and considering the spawn rate and the time duration of the
scenarios. It is worth mentioning that the failure rate estimation assumes a simulation environment that
represents realistic urban traffic conditions. However, it is essential to avoid overestimating the detection
performance by making unrealistic assumptions, such as assuming fewer objects that need to be detected over
the considered time period.

To achieve the results, CARLA simulation and deep learning techniques were integrated to evaluate the
perception capabilities of AD systems, particularly in challenging environments. The primary objective was to
estimate the failure rate. The CARLA simulator enabled the generation of realistic driving scenarios that can be
customized and simulated under various conditions. Deep learning models were then fine-tuned using synthetic
data generated from the simulator to assess object detection performance under normal and challenging

Fig. 3. Box plots (a) and Violin plots (b) comparing failure rate of object detection system under
"normal" and "challenging" environmental conditions.

a) b)

conditions, with objects of interest, such as pedestrians, traffic signs, traffic lights, and cars (ignoring trucks and
motorbikes). The evaluation process consisted of 450 test scenarios, covering a wide range of parameter
combinations. These scenarios included variations in fog, rain, lighting conditions, pedestrian models, and
pedestrian counts, representing different environmental and contextual conditions that AD systems may
encounter in real-world driving situations. Out of the total scenarios, 36 combinations were specifically
considered to represent challenging conditions, while the remaining scenarios represented normal conditions.

The results revealed a mean Average Precision (mAP) of 0.33 for object detection under normal conditions
and 0.047 under challenging conditions. The estimated failure rates for object detection were determined to be
650 average failures per hour under normal conditions and 1150 average failures per hour under challenging
conditions.

Additionally, the evaluation also examined the coverage of the parameter space for object detection. While
the evaluation achieved full coverage of the parameter space within the target operational domain design (ODD),
it also highlighted the challenges of achieving in-depth and realistic coverage of the overall domain of AD.
Furthermore, it revealed that the extensive scope of the domain made it difficult to realistically simulate and
assess all possible scenarios. Therefore, it is recommended to adopt an optimized approach that focuses on
specific objects of interest within the ODD and scenarios that are particularly relevant, e.g. pedestrian detection
under adverse environmental conditions. This targeted approach would allow for a more effective and efficient
assessment of the object detection system's performance while maintaining realization feasibility.

Acknowledgements

The presented work is funded by the German BMWK project on Real Driving Validation (RDV) with Grant
number 19A21051D and funding duration 2022-2025.

References

Abdel Hamed, A., Tewolde, G., Kwon, J. 2020. Simulation Framework for Development and Testing of Autonomous Vehicles. In:
IEMTRONICS (Ed.) 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp 1 6.

Althoff, M., Mergel, A. 2011. Comparison of Markov Chain Abstraction and Monte Carlo Simulation for the Safety Assessment of
Autonomous Cars. IEEE Trans. Intell. Transport. Syst. 12, pp. 1237 1247. https://doi.org/10.1109/TITS.2011.2157342.

Aravantinos, V., Schlicht, P. 2020. Making the Relationship between Uncertainty Estimation and Safety Less Uncertain. In: DATE (Ed.)
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp 1139 1144.

Autoware. 2024. -source software project for autonomous driving. https://autoware.org/.
Accessed 2 January 2024.

Baltodano, S., Sibi, S., Martelaro, N., Gowda, N., Ju, W. 2015. The RRADS platform. In: Burnett G (Ed.) Proceedings of the 7th
International Conference on Automotive User Interfaces and Interactive Vehicular Applications. ACM, pp 281 288.

Berlincioni, L. 2022. Autonomous Driving Research with CARLA Simulator. SIGMultimedia Rec. 14(1), 2, 8 pp.
https://doi.org/10.1145/3630646.3630648

Birolini, A. 2017. Reliability Engineering: Theory and Practice, 8th edn. Springer Berlin Heidelberg.
Buhler, A., Gaidon, A., Cramariuc, A., Ambrus, R., Rosman, G., Burgard, W. 2020. Driving Through Ghosts: Behavioral Cloning with False

Positives. In: IROS 2020 (Ed.) 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 5431 5437.
Cai, J., Deng, W., Guang, H., Wang, Y., Li, J., Ding, J. 2022. A Survey on Data-Driven Scenario Generation for Automated Vehicle Testing.

Machines. 10(11), 1101, 32 pp. https://doi.org/10.3390/machines10111101.
CARLA. 2024. CARLA: Open-source simulator for autonomous driving research. https://carla.org//. Accessed 2 January 2024.
Coelho, D., Oliveira, M. 2022. A Review of End-to-End Autonomous Driving in Urban Environments. IEEE Access. 10, pp 75296 75311.

https://doi.org/10.1109/ACCESS.2022.3192019.
Cui, P., Wang, J. 2022. Out-of-Distribution (OOD) Detection Based on Deep Learning: A Review. Electronics. 11(21), 3500, 19 pp.

https://doi.org/10.3390/electronics11213500.
Feng, D., Haase-Schutz, C., Rosenbaum, L., Hertlein, H., Glaser, C., Timm, F., Wiesbeck, W., Dietmayer, K. 2021. Deep Multi-Modal

Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell.
Transport. Syst. 22(3), pp1341 1360. https://doi.org/10.1109/TITS.2020.2972974.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V. 2017. CARLA: An Open Urban Driving Simulator. In: CoRL (Ed.) 1st
Conference on Robot Learning (CoRL 2017), PMLR 78, pp 1 16.

El-Wajeh, Y.A.M., Hatton, P.V., Lee, N.J. 2022. Unreal Engine 5 and immersive surgical training: translating advances in gaming
technology into extended-reality surgical simulation training programmes. Br J Surg 109, pp 470 471.
https://doi.org/10.1093/bjs/znac015.
, I. 2021a. , I. (Ed.) Technical Safety, Reliability and Resilience: Methods and

Processes, 1st edn. Springer Singapore, pp 101 126.
, I. 2021b. R , I. (Ed.) Technical Safety, Reliability and Resilience: Methods and Processes, 1st edn.

Springer Singapore, pp 161 178.
, I., Satsrisakul, Y., Finger, J., Vogelbacher, G. , C. , F. 2022. Advanced Markov modeling and simulation for safety

analysis of autonomous driving functions up to SAE 5 for development, approval and main inspection. In: 32-nd ESREL 2022, Leva,
M.C., Patelli, E., Podofillini, L., Wilson, S. (Eds.), pp 104 111.
, I., Mopuru, S.K.R., Puig-Walz, T., Dhanani, M., Sandela, N., , F., Vogelbacher, G., F., Jain, A.K., Richter, A.,

Kirchheim, K. 2023. Overall Markov diagram design and simulation example for scalable safety analysis of autonomous vehicles. In:

Brito, M.P., Aven, T., Baraldi, P. , M., Zio, E. (Eds.) The 33rd European Safety and Reliability Conference (ESREL 2023), The
Future of Safety in the Reconnected World, pp 2261 2268.

Jeon, H., Kim, Y., Choi, M., Park, D., Son, S., Lee, J., Choi, G., Lim, Y. 2022. CARLA Simulator-Based Evaluation Framework
Development of Lane Detection Accuracy Performance Under Sensor Blockage Caused by Heavy Rain for Autonomous Vehicle.
IEEE Robot. Autom. Lett. 7, pp 9977 9984. https://doi.org/10.1109/LRA.2022.3192632.

Kaalen, S., Nyberg, M., Bondesson, C. 2019. Tool-Supported Dependability Analysis of Semi-Markov Processes with Application to
Autonomous Driving. In: ICSRS (Ed.) 4th International Conference on System Reliability and Safety (ICSRS), pp 126 135.

Karangwa, J., Liu, J., Zeng, Z. 2023. Vehicle Detection for Autonomous Driving: A Review of Algorithms and Datasets. IEEE Trans. Intell.
Transport. Syst. 24, pp 11568 11594. https://doi.org/10.1109/TITS.2023.3292278.

Kaur, P., Taghavi, S., Tian, Z., Shi, W. 2020. A Survey on Simulators for Testing Self-Driving Cars. In: MetroCAD (Ed.) 2020 International
Conference on Connected and Autonomous Driving (MetroCAD), pp 62 70.

Koenig, N., Howard, A. 2004. Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IROS (Ed.) IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai, Japan, pp 2149 2154.

Kulshrestha, S. 2024. A self-driving car simulator built with Unity. https://github.com/udacity/self-driving-car-sim. Accessed 2 January
2024.

Lade, S., Shrivastav, P., Waghmare, S., Hon, S., Waghmode, S., Teli, S. 2021. Simulation of Self Driving Car Using Deep Learning. In:
ESCI (Ed.) 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), pp 175 180.

Malik, S., Khan, M.A., El-Sayed, H. 2022. CARLA: Car Learning to Act - An Inside Out. Procedia Computer Science 198, pp 742 749.
https://doi.org/10.1016/j.procs.2021.12.316.

Miura, K., Tokunaga, S., Ota, N., Tange, Y., Azumi, T. 2019. Autoware Toolbox. In: Proceedings of the 30th International Workshop on
Rapid System Prototyping (RSP'19), pp 8 14.

Nalic, D., Mihalj, T. , M., Lehmann, M., Eichberger, A., Bernsteiner, S. 2021. Scenario Based Testing of Automated Driving
Systems: A Literature Survey. In: FISITA, CAS (Eds.) FISITA World Congress 2021, 10 pp.

Niranjan, D.R., VinayKarthik, B.C., Mohana. 2021. Deep Learning based Object Detection Model for Autonomous Driving Research using
CARLA Simulator. In: ICOSEC (Ed.) 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC),
pp 1251 1258.

Norden, J., O'Kelly, M., Sinha, A. 2019. Efficient Black-box Assessment of Autonomous Vehicle Safety. https://arxiv.org/abs/1912.03618
Accessed 4 January 2024. 14 pp.

Nyberg, M. 2018. Safety analysis of autonomous driving using semi-Markov processes, ESREL 2018, Haugen et al. (Eds.), pp 781 788.
https://doi.org/10.1201/9781351174664-97.

Padilla, R., Netto, S.L., Da Silva, E.A.B. 2020. A Survey on Performance Metrics for Object-Detection Algorithms. In: IWSSIP (Ed.) 2020
International Conference on Systems, Signals and Image Processing (IWSSIP), pp 237 242

PyTorch. 2024a FasterRCNN_ResNet50_FPN.
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html. Accessed 4 January
2024.

PyTorch. 2024b. PyTorch: Models and pre-trained weights. https://pytorch.org/vision/stable/models.html. Accessed 4 January 2024.
Ren, J., Xia, D. 2023. Autonomous Driving Simulator. In: Ren, J., Xia, D. (Eds.) Autonomous driving algorithms and its IC Design. Springer

Nature Singapore, pp 153 162.
Richter, A., Puig-Walz, T., Dhanani, M. , I., Vogelbacher, G. , F., Finger, J., Stolz, A. 2023. Components and Their Failure

Rates in Autonomous Driving. In: Brito MP, Aven T, B Eds.) The 33rd European Safety and Reliability
Conference (ESREL 2023), The Future of Safety in the Reconnected World, pp 233 240.

Rong, G., Shin, B.H., Tabatabaee, H., Lu, Q., Lemke, S., Mozeiko, M., Boise, E., Uhm, G., Gerow, M., Mehta, S., Agafonov, E., Kim, T.H.,
Sterner, E., Ushiroda, K., Reyes, M., Zelenkovsky, D., Kim, S. 2020. LGSVL Simulator: A High Fidelity Simulator for Autonomous
Driving. In: ITSC (Ed.) International Conference on Intelligent Transportation, pp 1 6.

Rottmann, M., Maag, K., Chan, R., Huger, F., Schlicht, P., Gottschalk, H. 2020. Detection of False Positive and False Negative Samples in
Semantic Segmentation. In: DATE (Ed.) 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp 1351
1356.

Sandela, N. 2023. Safety and Reliability Analysis of Autonomous Driving using Markov Modeling and Deep Learning. Master Thesis.
Schreier, T., Renz, K., Geiger, A., Chitta, K. 2023. On Offline Evaluation of 3D Object Detection for Autonomous Driving. In: ICCV (Ed.)

IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp 4084 4089.
Seymour, J., Ho, D.T.C, Luu, Q.H. 2021. An Empirical Testing of Autonomous Vehicle Simulator System for Urban Driving. In: AITest

(Ed.) Artificial Intelligence Testing (AITest), pp 111 117.
Stubbs, P. 2024. Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research.

https://github.com/microsoft/AirSim. Accessed 2 January 2024.
SVL. 2024. SVL Simulator: An Autonomous Vehicle Simulator. https://github.com/lgsvl/simulator#readme. Accessed 2 January 2024
Thirugnana Sambandham, V., Kirchheim, K., Ortmeier, F. 2023. Evaluating and Increasing Segmentation Robustness in CARLA. In:

Guiochet J, Tonetta S, Schoitsch E, Roy M, Bitsch F (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops,
vol 14182. Springer Nature Switzerland, Cham, pp 390 396.

TORCS. 2024. TORCS - The Open Racing Car Simulator. https://sourceforge.net/projects/torcs/. Accessed 2 January 2024.
Verma, A.K., Ajit, S., Karanki, D.R. 2016. Reliability and Safety Engineering. Springer London.
Weber, H., Bock, J., Klimke, J., Roesener, C., Hiller, J., Krajewski, R., Zlocki, A., Eckstein, L. 2019. A framework for definition of logical

scenarios for safety assurance of automated driving. Traffic Inj Prev 20:65-70. https://doi.org/10.1080/15389588.2019.1630827.
Wymann, B., Dimitrakakis, C., Sumner, A., Espi, E., Guionneau, C. 2014. TORCS: The open racing car simulator.

https://www.cse.chalmers.se/~chrdimi/papers/torcs.pdf. Accessed 2 January 2024.
Yao, S., Zhang, J., Hu, Z., Wang, Y., Zhou, X. 2018. Autonomous-driving vehicle test technology based on virtual reality. The 2nd 2018

Asian Conference on Artificial Intelligence Technology (ACAIT 2018), J. eng. 2018(16), pp 1768 1771.
https://doi.org/10.1049/joe.2018.8303.

Zapridou, E., Bartocci, E., Katsaros, P. 2020.
D (Eds.) Runtime Verification, vol 12399. Springer International Publishing, Cham, pp 172 183.

