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Abstract 

Autonomous Driving simulations like CARLA offer a variety of functionalities including the modeling of subfunctions of 
autonomous driving such as detection, classification, identification, and tracking of persons, objects and road elements, route 
planning, and maneuver planning. All of these functionalities operate at high resolution level regarding scenario details such 
as conditions of weather, daytime, road type, traffic conditions, etc. In contrast, analytical safety assessments like functional 
Failure Mode and Effects Analysis (FMEA), Fault Tree Analysis (FTA) or Markov modelling and simulation operate at an 
abstract level in terms of failures per time or conditional failure rates such as failure of object detection given certain weather 
or daytime conditions. Furthermore, simulation options can be varied over a wide range of parameters and scenario types, 
including statistical generation of scenarios and active road participants, i.e. spawning of objects. The article presents a 
quantitative approach to generate failure rates per hour from CARLA simulation for object detection under a range of 
environmental conditions in terms of precipitation intensity, fog density, and time of the day, single and in combination. 
Focus is on the derivation of failure rate expressions that are accessible from simulation data. To this end computer vision 
metrics are used together with additional information available within simulation setup to compute failure rates per hour. 
Results are presented using sample tables, box plot and violin graphs. The CARLA simulator is used to assess an object 
detection algorithm that has been fine-tuned with CARLA sample images. It is discussed why the obtained failure rates are 
consistent but rather high. Further improvement options of the overall approach are provided.  
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1. Introduction 

Analytical approaches on autonomous driving (AD) system or functional level such as Failure mode and 
effects analysis (FMEA), Fault Tree Analysis (FTA) and advanced Markov simulation require as input failure 
rate data, potentially depending on scenario data, time and mission history. However, such data on the failure 
rate is only available to a very limited extent in the open scientific literature (Richter et al., 2023). For instance, 
in Markov simulation modeling mainly informed guess rates are assumed (Althoff and Mergel, 2011; Nyberg, 
2018; Kaalen, Nyberg and Bondesson, 2019; , 2022, 2023). 

The present paper uses simulations within CARLA environment to determine failure rates for adverse 
environmental conditions. The approach uses short sequences of driving at a crossing setting for the assessment 
of object detection (Sandela, 2023). The aim is to estimate failure per time of the detection, identification and 
classification mechanisms. Note that this is different from existing approaches using CARLA that focus on 
standard computer vision evaluation metrics, e.g. in terms of false negative and positive rates for lane detection 
(Jeon et al., 2022), comparison of metrics (Schreier et al., 2023), robustness of object segmentation (Thirugnana 
et al., 2023), or conduct overall black box testing of AD systems (Norden, O'Kelly, and Sinha 2019). 
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The paper is organized as follows. Section 2 reviews further related literature showing that simulation-based 
failure assessments focus on the determination of metrics as known from computer vision. Section 3 details the 
present approach that tries to include scenario information. Section 4 presents mainly tabular simulation results 
showing that the open source fine-tuned object detection algorithms, result in rather high failure rates per time. 
Section 5 draws conclusions and proposes further work options.   

2. State of the art, gaps addressed and approach overview 

There has been a growing emphasis on the use of synthetic datasets and scenario simulation for the validation 
of safety and reliability in autonomous driving (AD) research. Also real-world data sets are increasingly used, 
see e.g. (Feng et al., 2021; Karangwa, Liu, and Zeng, 2023) for an overview. However, their limitations in 
capturing all possible scenarios and complexities faced by autonomous vehicles (AVs) have led researchers to 
explore alternative approaches. Synthetic datasets generated through scenario simulation, particularly in the 
popular simulator CARLA (Dosovitskiy et al., 2017; CARLA, 2024), offer a controlled and diverse environment 
for testing and evaluating AD algorithms. By leveraging synthetic datasets, researchers can assess the 
performance and reliability of AVs under various environmental conditions and encounter corner cases and edge 
cases that may not be present in real-world datasets.

The review paper (Niranjan, VinayKarthik and Mohana, 2021) highlights the effectiveness of CARLA 
simulator for training and testing object detection algorithms in AD. CARLA's open-source nature and realistic 
environment modeling provide advantages over other simulators. The paper discusses successful 
implementations of advanced algorithms and ongoing developments in 3D object detection, edge-based 
frameworks, and LiDAR detection. It also highlights the potential of simulation in AD research. Likewise, (Nalic 
et al., 2021) is a review of scenario simulation for AD, highlighting the importance of these approaches for 
evaluating the performance of AVs under different conditions. 

Other AD scenario simulation frameworks include RRADS (Real Road Autonomous Driving Simulation) 
(Baltodano et al., 2015), TORCS (The Open Racing Car Simulator) (Wymann et al., 2014; TORCS, 2024), 
Udacity Self-driving Car Simulator (UNITY) (Lade et al., 2021; Kulshrestha, 2024), Microsoft AirSim (Stubbs, 
2024; Yao et al., 2018), Autoware (Autoware, 2024; Miura et al., 2019), SVL (SVL, 2024) (Seymour, Ho and 
Luu, 2021), LGSVL Simulator (Rong et al., 2020), and Gazebo (Koenig and Howard, 2004; AbdelHamed, 
Tewolde and Kwon 2020). Among these, CARLA stands out as a preferred choice for AD scenario simulation, 
see the reviews (Kaur et al., 2020; Cai et al., 2022; Coelho and Oliveira, 2022; Ren and Xia, 2023). It offers a 
wide range of features including realistic urban environments, dynamic traffic patterns, and accurate vehicle and 
sensor models. CARLA's ability to generate synthetic data enables efficient training and testing of ML models. 
Its comprehensive and customizable environment allows for the generation of diverse scenarios, making it 
suitable for evaluating AD systems in various conditions. Furthermore, CARLA is open-source and provides an 
extensive documentation. CARLA is often preferred for research and development of AD due to its high level of 
realism, representativeness and flexibility. 

Operational Design Domain (ODD) specifications of an AD system encompass various factors such as 
environmental conditions (e.g., weather, lighting/time of the day), driving conditions such as road and traffic 
conditions (e.g., types of roads, intersections), geographical constraints, speed limits, traffic rules, presence of 
pedestrians and other vehicles, functional limitations, and other relevant aspects of the operational environment. 
These factors and conditions define the overall operational capabilities and limitations of the entire system. The 
present aim is to identify critical scenario factors and determine their impact on time-dependent failure rates, 
both individually and in combination, using CARLA simulation. 

3. Methodology and implementation details 

3.1. CARLA Simulation  

Basics of scenario simulation include a taxonomy of scenario suitable for scenario description (Weber et al., 
2019): functional, logical, and concrete. Functional scenarios are high-level descriptions of driving situations, 
while logical scenarios describe specific sequences of events, and concrete scenarios are detailed descriptions of 
a specific environment and the interactions within it. For scenario simulation, functional scenarios can be used to 
describe the general driving environment and goals of the AD system (e.g., driving safely in a variety of 
conditions), logical scenarios to provide more detail about how the system processes sensor data and makes 



 

decisions, and concrete scenarios to provide specific examples of how the system performs in particular 
situations (e.g., avoiding a pedestrian in low visibility conditions).  

In the following, scenario description encompasses scenario characteristics or elements that refer to the 
features and attributes of a scenario that are relevant for testing the behavior and performance of an autonomous 
system. These characteristics include factors such as weather conditions, time of day, road layout, traffic density, 
and the behavior of other road users.  

CARLA (CAR Learning to Act) is a high-fidelity urban driving simulation environment, developed as an 
open-source layer over Unreal Engine 4 (UE4) (El-Wajeh, Hatton and Lee, 2022; Malik, Khan and El-Sayed, 
2022). It is primarily intended for autonomous driving development, testing and validation (Berlincioni, 2022). 
In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, 
vehicles). It supports flexible specification of sensor suites and environmental conditions. CARLA is  
used to generate AD scenarios, related camera images, i.e., rendered sequence of video frames, along with 
corresponding segmented ground truth data.  

CARLA has two core modules: the simulator and the Python API and allow users to control the simulations 
via its API. It provides users with simulated sensor and camera data which can be used to train object detection 
models or reinforcement learning algorithms to realize autonomous driving. For the purpose of evaluating AD 
object detection performance. In the present approach sample object data is generated for fine-tuning of an object 
detection algorithm. Furthermore, the self-driving algorithm is used to generate these images and to generate test 
scenarios.  

3.2. Failure rate per time estimation of object detection system from CARLA simulation for AD 

Failure rate is a measure of how often a system or component fails within a given period of time. It is 
expressed as the number of failures per unit of time, e.g. (Verma, Ajit and Karanki, 2016; Birolini, 2017; , 
2021b). Failure rate is generally used to evaluate the reliability of a system or components, and to estimate the 
likelihood of future failures.  

To start from the first principles, the failure probability of a (sub) system is defined as the probability at which 
it fails within a given period of time . This corresponds to the cumulative failure probability  based on 
a failure probability density function (PDF) . This assumes that a system fails only once. 

From this, a failure rate , can be computed assuming an underlying distribution. An 
exponential distribution results in . This exponential failure rate gives the frequency (in units 
per time) that a system fails assuming it has survived until time . We assume that there is a constant failure rate 
for given combination types of environmental conditions (or factors) such as rain and fog intensity, or time of the 
day.  
     In the case of software dominated object detection, it can be assumed that the object detection system 

i.e. without changes. Thus, the number of failures within an 
observational time interval are aggregated to obtain an average failure rate per time 
 

                                                                                                   (1) 
 

In order to estimate the failure rate of the AD object detection algorithm, first, it is important to understand 
what constitutes a failure of the detection algorithm. In the context of AD object detection, failure rate could be 
defined as the frequency with which the algorithm fails to detect objects in its environment. Failure of the 
detection algorithm can happen because of the underlying failure modes (types of failures, e.g. as distinguished 
in FMEA , 2021a)). Essentially, they can occur in three basic ways:  

1) - fails to identify an object that 
is actually present, see e.g. (Rottmann et al., 2020). 

2) -
when it is actually not there, see e.g. (Rottmann et al., 2020; Buhler et al., 2020). 

3) Out-of-distribution (OoD) (Cui and Wang, 2022) errors occur when the algorithm encounters an object or 
situation that it has not been trained to detect, and is therefore unable to accurately classify. Typical 
examples could be: novelties, anomalies, corner cases. 

In a simulated environment, it can be assumed that there are likely no inherent OoD errors, since the 
simulation is customized by the users themselves, and there is usually a well-defined and limited set of possible 
inputs. Therefore, it is less likely for OoD errors to occur during data generation or performance evaluation 
within a simulated environment. Hence, for the computation of the failure rate within a simulation environment, 
it is sufficient to consider the number of false negative (FN) and of false positive (FP) errors occurred in the 



simulation. In addition, using the total simulation time corresponding to real time simulated, the failure rate 
reads 

 

                                                (2) 
 

Failure rate per time could be, e.g., per second, per hour, or per year.  
Furthermore, in the context of AD object detection, compared to FPs, FNs could potentially lead to higher 

critical consequences, such as missing pedestrians, vehicles, or other obstacles that could result in accidents. 
Thus, assuming FPs are of a lesser concern compared to FNs, they are assumed to be negligible, as argued also 
in (Aravantinos and Schlicht, 2020). Therefore, focusing specifically on FNs, and ignoring the potential impact 
of FPs, a non-conservative simplification of (2) reads 

 

                                                                                                                  (3) 
 

In order to estimate the failure rate, we use the False Negative Rate (FNR), , resulting in 
, where  is the number of positives. Additionally, defining the total simulation time as , (3) 

updates to 
 

                                                                                                                                 (4) 
 

Equation (4) can be assumed to give the failure rate for a single simulation. When average values  and  
are used resulting from  simulation runs with an average duration of , one has 

 

                                                                                                                                 (5) 
 

Furthermore, we consider the difference in the time scales in simulation and real-world, accounting for the 
simulation time-step size, see e.g. (Zapridou, Bartocci and Katsaros, 2020). We use CARLA configuration 

- -step corresponds to . Accordingly, for 
computing the failure rate per time, the average simulation time,  can be written as  where 

-  is the average number of simulation steps. Now, updating (5) in terms 
of average number of simulation steps reads  

 

                                                                                                                              (6) 
 

Therefore, for a single simulation run (i.e., ) and without averaging, 
 

                                                                                                                                (7) 
 

where - . Equation (7) is the final equation for estimating the 
failure rate per time of the object detection system for a single simulation run.  

3.3. Object detection algorithm 

For the object detection task, a pre-trained model is used as a starting point for fine-tuning on the custom 
dataset, rather than training it from scratch (Sandela, 2023). The pre-trained model fasterrcnn_resnet50_fpn of 
the TorchVision Model zoo (PyTorch, 2024b) is selected since the requirement is only to draw bounding boxes 
around the detected objects. Furthermore, the pre-trained model needs to be adapted to the custom dataset for 
fine-tuning.  In this case, the entire model needs to be re-trained, as the custom dataset is different from the pre-
trained dataset, making it more effective for the custom object detection task. This means updating all the 
parameters of the model, not just the last few layers. The pre-trained model can be modified in two ways: either 
by changing the backbone, or by adding a new head (classifier) with the appropriate number of output classes, 
i.e., a resnet50 backbone and a FastRCNNPredictor head. The latter option is chosen (PyTorch, 2024a). 

4. Results and discussion 

4.1. CARLA sample simulation results 

Figure 1 shows the implementation results on test dataset: one scenario out of 450 scenarios with variations of 
environment factors, with original RGB color image (left) and corresponding segmentation ground truth (right). 



 

Table 1 lists a sample record of the results of representative AD object detection performance evaluation under 
the influence of a range of environment factors. Object detection metric used are for average precision (AP), and 
similarly for average recall (AR):  

 mAP: This is the standard mean average precision (mAP) metric calculated over all classes and 
intersection over union (IoU) thresholds for all object sizes, see e.g. (Padilla, Netto, and Da Silva 2020).  

 mAP_50 and mAP_75: are the mAP with an IoU threshold of 0.5=50% and 0.75, respectively. 
 mAP_small, mAP_medium, mAP_large: They give the mAP of the model on small, medium, and large 

objects, respectively. The size categories are usually defined based on the relative object's area in the 
image.  

Table 1 displays cells highlighted in red (fog_density=100, sun_altitude_angle=90, precipitation=100) 
indicating the most challenging environmental conditions where there is high precipitation, a high sun altitude 
angle, and high fog density, suggesting a strong impact on the model's performance, evident from the lowest 
value of mAP= 0.04763. Likewise, the cells highlighted in green (fog_density=0, sun_altitude_angle=0, 
precipitation=0) indicating normal or optimal environmental conditions, having the highest value of mAP= 
0.33665. It can also be seen that, while object localization metrics mAR_1 is significantly lower, the mAP_small 
and mAR_small are totally zero under challenging conditions, signifying their impact on the model performance. 
This suggests that the challenging conditions of high fog density, high sun altitude angle, and high precipitation 
have a detrimental impact on the model's performance. The combined effect of these factors hampers the model's 
ability to accurately detect objects leading to lower performance across multiple metrics. 

On the other hand, the normal conditions of least fog density, low sun altitude angle, and no precipitation 
have a more favorable effect on the model's performance. Therefore, the model is able to perform better, 
resulting in higher performance metrics in these conditions. Overall, the given conditions exhibit strong 
differences in the performance metrics for object detection and localization. 

4.2. Metric analysis using violin plots 

Figure 2 shows three violin plots comparing the distribution of model performance (mAP) across different 
levels of the environmental factors: fog density, precipitation, and sun altitude angle. It allows to analyze the 
aggregated impact of these factors and understand how they collectively influence the performance. 

The violin plot of mAP vs. fog density on the left illustrates the combined effect of multiple factors across 
different levels of fog density on the performance. The levels of fog density ranging from 0 to 100. Each violin 
has the information of 90 simulations i.e. a combination of 5 levels of precipitation, 3 different positions of sun 
each, and 6 pedestrian models, with a particular value of fog density, resulting in 90 combinations  

Table 1. A sample of data (14 rows out of 450 rows of raw data) showing the results of the performance evaluation  
of object detection model using standard evaluation metrics. 

Fig. 1. Final evaluation results of the object detection performance on test dataset (on 1 scenario out of 450 variations of 
environment factors), with original RGB color image (a) and corresponding segmentation ground truth (b). 

a)                                                                            b) 



( ). Likewise, each violin contains the combined influence of other environmental factors of 
precipitation, sun altitude angle and pedestrian models alongside a particular level of fog density. i.e., it 
represents the combined influence of multiple factors, not just the isolated effect of fog density. As can be seen, 
the performance exhibits a wide range of distribution, as the plots demonstrate distinct patterns for different 
levels of fog density. Also, there is a clear difference in the distribution of mAP values between the lowest and 
highest levels of fog density. Additionally, the performance is rather lower at higher levels of fog density, with a 
wider distribution of values. At lower levels of fog density, the performance is clearly higher and more tightly 
clustered. Overall, this suggests that the performance is significantly affected by the influence of fog density, in 
combination with other factors, resulting in a range of outcomes across different scenarios. 

 

The violin plot in the center shows the distribution of mAP values across different levels of precipitation. It 
can be seen that there is no clear trend in the distribution of mAP values across different levels of precipitation. 
In this case, each violin is again an outcome of 90 combinations ( ). As can be seen, the mAP 
values appear to be relatively evenly distributed across the different levels of precipitation, with a larger range of 
mAP values for lower levels and a smaller one for higher levels of precipitation. Overall, the performance is 
relatively consistent across different precipitation levels. 

The violin plot on the right shows the distribution of mAP vs. sun altitude angle, with midday (90 ) being the 
most challenging condition and sunset (0 ) and night (-60 ) showing a similar trend with a relatively less 
influence on the performance. In the plot of mAP vs. sun altitude angle of 90 , the violin contains the combined 
influence of multiple environmental factors of fog density, precipitation, alongside sun altitude angle of 90  on 
the performance, i.e., it represents again the combined influence of multiple factors, not just the isolated effect of 
sun altitude angle of 90 . Accordingly, each violin contains the information of 150 simulations (

). As can be seen, the violin plot corresponding to sun altitude angle of 90  reveals that the mAP values have 
a wider spread and lower median compared to the other positions of sun. Surprisingly, the performance is lower 
during the midday, compared to other times of day, with a broader distribution of values. This indicates that 
when the sun is at its highest point in the sky during midday, the model's performance is adversely affected. The 
sun glare at this angle due to strong sun during midday might introduce challenges in object detection, or smaller 
shadows that cannot be well separated from object shapes leading to lower mAP values. Despite the optimal 
lighting conditions, the combined effect of the sun altitude angle of 90 with other factors seems to negatively 
impact the model's performance.  

4.3. Failure rate analysis 

Table 3 shows the results of the failure rate estimation of object detection system under challenging 
environmental conditions. It shows the False Negative Rate (FNR) and failure rate values corresponding to the 
most challenging 36 scenarios out of a total 450 scenarios. They are classified based on their level of influence 
on the system as discussed in Section 4.2.     

In order to illustrate the estimation of failure rate, a sample computation is done for one scenario using (7) 
with  for simulation run 2 from Table 2 below, , and  as in Table 1. Number of 
simulation steps  and  

  

Fig. 2. Violin plots comparing the influence of different environment factors on the detection performance. The plots from left to right 
illustrate: mAP vs. Fog density, mAP vs. Precipitation and mAP vs. Sun altitude angle, respectively. 



 

In Table 2, the lowest failure rates (around 880 ) are observed in scenarios 2 and 14, under fog density 
level of 50, precipitation level of 75, and midday sun angle. These scenarios seem to have the most favorable 
conditions for object detection, despite the presence of fog. Likewise, scenarios 3, 29, and 31 also exhibit 
relatively low failure rates, suggesting a reasonable performance. In contrast, the highest failure rates (ranging 
around 1210  to 1220 ) are observed in scenarios 21 and 27. These scenarios represent the most 
challenging conditions with highest levels of fog density and precipitation. The remaining scenarios fall within 
the intermediate range of failure rates, demonstrating varying degrees of performance under different 
combinations of fog density, precipitation, and sun angle.  

 
Figure 3 illustrates box plots (left) and a corresponding violin plots (right) comparing failure rate of object 

detection system under normal and challenging environmental conditions.  
In Figure 3, the failure rates for challenging scenarios are higher and more concentrated in a narrower range 

compared to normal scenarios. The median failure rate under challenging environmental conditions is 
significantly higher, by a factor of ca. 1.6 with a tightly spread interquartile range (IQR), which encompasses the 
middle 50% of the data, compared to that under normal conditions. As expected from discussion along with 
Figure 2, the object detection algorithm is more likely to fail when it is exposed to challenging conditions such 
as extreme rain, dense fog, and midday conditions. Furthermore, the presence of a positive outlier further 
emphasizes variability of detection under challenging scenarios. 

Table 2. Results of failure rate estimation of object detection system under challenging environmental conditions. 



In contrast, the wider IQR and larger overall range with much lower minimum but only marginally lower 
maximum failure rate values under normal conditions in Figure 3 
variable under normal conditions. The improvement is favorable in terms of detecting objects under these 
conditions. However, the occurrence of high failure rates for a lot of scenarios suggests much room for 
improvement. 

5. Conclusions  

On the whole, as expected, the comparison between failure rates under different environmental conditions 
clearly demonstrates that the object detection system faces more difficulties and exhibits less reliable 
performance in challenging environmental characterized by extreme rain, dense fog, and midday conditions. 
This underscores the need to address the challenges posed by these factors in order to enhance the robustness and 
reliability of the object detection system in challenging environmental scenarios. 

Furthermore, the overall very high failure rates observed in the simulation environment emphasize that it is 
important to understand and improve the current object detection 
and strategies could be targeted towards refining algorithms, adjusting sensor configurations, or incorporating 
advanced sensor technologies to enhance the system's robustness in challenging scenarios to help improve the 
existing systems. Also, it is important to validate the performance of the object detection system in real-world 
conditions, given that the environmental factors have a much broader variation and exhibit different patterns and 
distributions in real-world. 

One major factor contributing to the high failure rates is the insufficient training of the object detection 
algorithm for specific objects as well as specific environmental conditions (fog, rain and midday). Furthermore, 
the algorithm does not consider the distance of objects as well as whether they are on road or close to a road. It 
also conducts an assessment per image only. Although these limitations are not critical in terms of the validity of 
the methodology, they strongly impact the accuracy of failure rate estimates negatively since it is tested if all 
objects are detected. This explains why the estimated failure rates consistently fall in a high order of magnitude 
( ).  

The simulation results reveal that a considerable number of objects, both static and dynamic, remain 
undetected within the given time frame. These findings align with the low mean average precision (mAP), which 
is less than  for the very challenging conditions. The low mAP further supports the observation of high 
failure rates based on false negative rates (FNR) and considering the spawn rate and the time duration of the 
scenarios. It is worth mentioning that the failure rate estimation assumes a simulation environment that 
represents realistic urban traffic conditions. However, it is essential to avoid overestimating the detection 
performance by making unrealistic assumptions, such as assuming fewer objects that need to be detected over 
the considered time period. 

To achieve the results, CARLA simulation and deep learning techniques were integrated to evaluate the 
perception capabilities of AD systems, particularly in challenging environments. The primary objective was to 
estimate the failure rate. The CARLA simulator enabled the generation of realistic driving scenarios that can be 
customized and simulated under various conditions. Deep learning models were then fine-tuned using synthetic 
data generated from the simulator to assess object detection performance under normal and challenging 

Fig. 3. Box plots (a) and Violin plots (b) comparing failure rate of object detection system under  
"normal" and "challenging" environmental conditions. 

a)                                                                              b) 



 

conditions, with objects of interest, such as pedestrians, traffic signs, traffic lights, and cars (ignoring trucks and 
motorbikes). The evaluation process consisted of 450 test scenarios, covering a wide range of parameter 
combinations. These scenarios included variations in fog, rain, lighting conditions, pedestrian models, and 
pedestrian counts, representing different environmental and contextual conditions that AD systems may 
encounter in real-world driving situations. Out of the total scenarios, 36 combinations were specifically 
considered to represent challenging conditions, while the remaining scenarios represented normal conditions. 

The results revealed a mean Average Precision (mAP) of 0.33 for object detection under normal conditions 
and 0.047 under challenging conditions. The estimated failure rates for object detection were determined to be 
650 average failures per hour under normal conditions and 1150 average failures per hour under challenging 
conditions.  

Additionally, the evaluation also examined the coverage of the parameter space for object detection. While 
the evaluation achieved full coverage of the parameter space within the target operational domain design (ODD), 
it also highlighted the challenges of achieving in-depth and realistic coverage of the overall domain of AD. 
Furthermore, it revealed that the extensive scope of the domain made it difficult to realistically simulate and 
assess all possible scenarios. Therefore, it is recommended to adopt an optimized approach that focuses on 
specific objects of interest within the ODD and scenarios that are particularly relevant, e.g. pedestrian detection 
under adverse environmental conditions. This targeted approach would allow for a more effective and efficient 
assessment of the object detection system's performance while maintaining realization feasibility.  
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