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Abstract 

Light-emitting diodes (LEDs) constitute pivotal components applied across diverse domains encompassing lighting, signaling, 
medicine, and other sectors. Since functioning as luminescent devices, LEDs exhibit a self-heating phenomenon during 
operation, emanating from internal heat generation. This self-heating phenomenon significantly influences the operational 
reliability of LEDs, particularly in confined environments, manifested externally by an increase in the temperature of the 
surrounding environment, which causes the LED's degradation rate to occur faster than expected. Consequently, these impacts 
of phenomenon must be considered when conducting Accelerated Tests (ATs) for LEDs. This paper introduces a voltage 
degradation model for LEDs, using the Gaussian regression method. This model is formulated based on voltage data derived 
from accelerated testing, considering the increased test temperature due to the self-heating effect as an input variable. 
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1. Introduction 

Self-heating is a phenomenon inherent to devices, excluding those designed specifically for heat generation, 
wherein the device is regarded as a heat source due to the presence of a distinct internal resistance. Despite 
advancements in science and technology, no viable solutions have been proposed to eliminate this internal 
resistance, necessitating its acknowledgement. This phenomenon substantially influences the performance and 
operational efficiency of electronic systems and devices, including Electronic Control Units (ECUs) and 
semiconductor components, etc.  

While light-emitting diodes (LEDs) are known for their extended lifespan of up to 50,000 hours in open 
environments (IESNA, 2008) rendering the impact of self-heating seemingly inconsequential, its significance 
becomes pronounced in accelerated tests. In scenarios where temperature functions as an acceleration factor, due 
consideration must be given to this phenomenon. Notably, a mere increase of 10 oC in temperature leads to a 
twofold escalation of the degradation of respective devices, underscoring the imperative nature of addressing self-
heating in such accelerated testing environments. In ATs, this phenomenon increases the temperature of the 
surrounding environment and makes the test temperature unstable, which causes the LED's degradation rate to 
occur faster than expected. 

Our survey focused on articles using the keywords "LED," "degradation," "reliability," and "self-heating," 
revealing limited relevance to these themes. Notably, the work by (Truong et al., 2022) specifically considers the 
impact of self-heating on Cree EZ1000 LEDs. The methodology involves Accelerated Degradation Tests (ADTs) 
to capture lumen data at various temperatures. Instead of directly assessing the actual temperature impact during 
testing, the authors employ mathematical methods to describe and model the self-heating effects. 

In contrast, other surveyed articles also employ ADTs for different LED types, incorporating temperature as an 
acceleration factor at various values. (Pugalenthi et al., 2022) introduce ADTs for both Light Output LEDs and 
Color LEDs, conducting tests at distinct temperatures and current combinations to evaluate lumen degradation. 
Similarly, (Enayati et al., 2021) conduct ADTs for Edison Opto Corporation's 3W LED under mild and severe 
conditions, recording luminous flux data over extended durations. Notably, temperature data during the test 
process is regrettably omitted in their investigations. 
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While the survey reveals a scarcity of relevant articles, the identified works provide valuable insights into the 
assessment of LED reliability, particularly in the context of self-heating considerations. Further research in this 
domain could benefit from a more comprehensive exploration of the interplay between temperature, self-heating, 
and degradation in diverse LED models and conditions. 

Obviously, obtaining degradation data, can be called the experimental method is respected in reliability research. 
In some cases, the data can be used to assess the deterioration process of objects, but in other cases, it is not sufficient 
for the assessment. Therefore, the modelling approach was proposed and developed as an independent solution or a 
support, supplement and development solution for the experiment methods. (Tsai et al., 2022) present a physics-
based model to study the efficiency droop under high current densities of h-LEDs and c-LEDs using Open-Boundary 
Quantum LED Software. (Kyatam et al., 2021) propose a method using ANSYS software to assess the reliability of 
Cree white XLamp XB-D LEDs with impact of Die Carrier. In another way, (Pugalenthi et al., 2022) present a deep 
learning method based on obtained data using neural networks and Bayesian optimization to predict the lumen 
degradation of LEDs. (Lim et al., 2022) develop the Gaussian regression with multi-output to validate the reliability 
of OSRAM golden dragon LEDs with anomaly detection. (Anh et al., 2022) combine statistical techniques and 
Wiener process to predict mean time to failure and remaining useful life of LEDs based on obtained degradation 
data and figure out the critical level. (Ibrahim et al., 2021) present a Bayesian networks method to estimate the 
lifetime of LEDs based on the degradation data of LED components which impact on the lifetime and performance 
of LEDs. (Valis et al., 2023) develop a model which is backed up by stochastic diffusion process to estimate, 
determine and predict key reliability measures of LEDs. According to the survey, the data-driven model 
predominates and is used commonly in LED reliability studies. 

The primary objective of this article is to present a systematic experimental methodology designed to monitor 
meticulously and document the voltage and temperature fluctuations throughout a long-term accelerated testing 
period, employing a chosen high sample frequency for Light-Emitting Diodes (LEDs). In our modelling approach, 
we adopt a Bayesian-optimized Multi-Input and Single-Output (MISO) Gaussian process regression framework. This 
methodology is employed to model the degradation of LEDs effectively, considering temperature variations imposed 
during the testing phase. The model is established by using voltage degradation data obtained from diverse LEDs, 
with the additional utilization of other LED data to validate its predictive performance. 

1. Proposed Methodologies 

1.1. Multi-Input, Single-Output Gaussian Regression Process 

Gaussian regression, also known as Gaussian process regression or kriging, is a non-parametric Bayesian 
approach for regression analysis. It's particularly useful when dealing with problems where the underlying 
relationships are not known or when the relationships are complex and nonlinear. Suppose that we consider a 
system with n-input variables n,...,X,XX 21X  and single output variable myyyY ,...,, 21 . X, Y can be 

rewritten in vector form as T
n,..,X,XX 21X  and T

myyyY ,...,, 21  with m is the number of data points in the 
training dataset. The aim is to figure out a function Xf  that represents the values of Y in terms of the values of 
X, and can be represent as form: 

XfY  (1) 

where  is a vector of independent and identically distributed Gaussian noise terms. Xf  is vector-valued function 
representing the latent functions associated with the output. The joint distribution of the latent function in Gaussian 
Regression is typically modelled as a multivariate normal distribution as given by (Li and Chen, 2016): 

KX ,~ GPfP  (2) 

where K,GP  denotes a multivariate normal distribution;  is the mean vector of the latent function and K is 
the covariance matrix of the latent function.  

The general form of the covariance function for a multi-input scenario can be expressed as ', XXk , in which 
X, X' are the input vector associated with different input points. Hence, the matrix K is represented by: 

njnik
nnji ,...,1;,..,1,XXK . (3) 

Each element of K is the covariance function (kernel) that captures the relationships between different input 
points. In the context of multi-input and single-output Gaussian regression, the covariance function (kernel) plays 
a crucial role in modelling the relationships between different input dimensions and capturing the smoothness or 



 

correlation in the latent function. Some kernel functions are applied to calculate the value of the elements of K, 
are Radial Basis Function (RBF) Kernel (Gaussian Kernel), Linear Kernel, Po

 
 Radial Basis Function (RBF) Kernel (Gaussian Kernel) (Kuo et al., 2014): 
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in which, v is a shape parameter and Kv is the modified Bessel function. 
The output variable is considered as a noise-version of Xf  (Li and Chen, 2016): 

2,~ XX fNfYP   (6) 

where 2,XfN  denotes a normal Gaussian distribution and 2  is the variance of the observation noise for output 
variable. The probability density function (PDF) of this normal distribution is given by: 

22 2
exp

2

1 XX fYfYP  (7) 

In the MISO Gaussian regression, the likelihood function is used in combination with the prior distribution over 
the latent function (modelled using the covariance function) to obtain the posterior distribution of the latent 
function given the observed data. The likelihood function models the distribution of the observed output variable 
Y given the latent function Xf  and the observation noise. Assuming Gaussian noise, the likelihood function is 
expressed as the probability density function (PDF) of the multivariate normal distribution (Li and Chen, 2016; 
Maatouk and Bay, 2016): 
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where 2/12/2 Km  is a normalization constant associated with the Gaussian distribution, m is the number of data 
points in the training dataset, and  typically represents the set of hyperparameters associated with the model. 

1.2. Learning and Optimizing Parameter Problems 

In Gaussian Regression, the challenges of learning and optimization prominently emerge within the domains 
of model training, hyperparameter tuning, and the prediction of new values to optimize the likelihood of observed 
data. The optimization of parameters for prediction is centered on fine-tuning hyperparameters to maximize both 
predictive mean and variance. This is often contextualized within Bayesian optimization, aiming for an efficient 
exploration of the hyperparameter space. These processes are inherently iterative, involving continuous updates to 
hyperparameters and subsequent model refitting. 

The learning and optimization endeavors revolve around determining an optimal set of parameters associated 
with the variables K and 2 . Bayesian optimization methods, employ an acquisition function to strategically select 
the subsequent hyperparameter configuration for evaluation. Commonly utilized acquisition functions encompass 
Expected Improvement (EI), Probability of Improvement (PI), and Upper Confidence Bound (UCB). The 
acquisition function plays a crucial role in balancing exploration and exploitation. Its formal expression is 
articulated as follows (Wu et al., 2019): 

GPY ,,maxarg* X  (9) 

in which,  denote the acquisition function and  typically represents the set of hyperparameters associated 
with the model. Consider the EI as acquisition function we have (Wang and Jin, 2023): 



 

0,max min newYfEI  (10) 

where Yf minmin  denotes the current best. The EI is computed by: 

ZZZEI new  (11) 

where 
new

newfZ min  is Z-score value, which measures how many standards deviations new  the predicted mean 

new  of the objective function at the new configuration is away from the current best value; ( ) is the cumulative 
distribution function (CDF) of the standard normal distribution, and ( ) is the probability density function (PDF) of 
the standard normal distribution. The acquisition function *  is optimized using an Optimization algorithm. This 
article elucidates the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, a notable 
optimization technique renowned for its distinctive feature of employing a limited-memory approximation to the 
Hessian matrix. Unlike conventional methods that involve the direct computation or storage of the entire Hessian 
matrix, L-BFGS employs a judicious strategy wherein it maintains a low-rank approximation. This approximation 
is derived from pertinent information gleaned from the most recent iterations, contributing to computational 
efficiency and reduced memory requirements. The Likelihood function is adopted as the objective function in our 
analysis. The L-BFGS update at iteration k is calculated as follows (Al-Baali, 2001): 
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in which, kfYP X  is the gradient of the objective function at iteration k; Xk is the parameter vector at iteration 
k;  k is the difference between gradients at iterations k+1 and k; Sk is the difference between parameter vectors at 
iterations k+1 and k; k is a scalar used to update the approximation of the inverse Hessian matrix. Hk is the 
approximation to the inverse Hessian matrix at iteration k and I is the identity matrix. 

2. Data Acquisition and Pre-processing 

In this section, we describe an Accelerated Test in the laboratory to obtain the degradation data of warm, white 
LED GT-P10WW339910700 10W. Its specifications is given in Table 1. 

Table 1. The parameter of LED GT-P10WW339910700 10W (GETIAN, 2013). 

Parameter Value Unit 

Luminous flux  lm 

Forward Voltage  V 

Maximum Forward Current 1050 mA 

Thermal Resistance 12 oC/W 

In our experimentation, we conducted conventional Accelerated Degradation Tests (ADTs) incorporating a 
step-stress methodology, wherein temperature served as the primary acceleration factor while the current remained 
constant at 1050mA. The temperature in the test was incrementally adjusted in a stepwise fashion over time. Data 
recording occurred every 10 minutes for both voltage degradation and the temperature within the thermal chamber. 
The observed temperature data reveals that the actual temperature in the thermal chamber consistently exceeds the 
proposed temperature by approximately 10o C, as shown in Figure 1 (left). In our ADTs, the degradation parameter 
is voltage, and temperature within the thermal chamber is also measured. This approach is different from previous 
methodologies. To account for this temperature variation, we recalibrated the test duration to align with an 
equivalent normal operating temperature (absent thermal stress). This adjustment involved extending the test time 
in each temperature period, applying an acceleration coefficient calculated according to the Arrhenius equation 
(IEC 62506, 2013): 
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where Ea = 0.7 eV is activation energy, kB = 8.617385 10-5   Tuse=35 oC is 
temperature in use and Ttest [oC] is temperature in experiment. Using the Arrhenius equation, our calculations indicate 
that the adjusted time to normal temperature based measured temperature during the ADTs is greater than based on 
designed test temperature about two times, can be seen in Figure 1 (right). This insight is crucial in understanding the 
differences between the designed test conditions and the actual test conditions. 
 

  
Fig. 1. The graphics plot of the designed test temperature and measured temperature (left), and the adjusted equivalent time to normal 

temperature based on respective temperature (right). 
 

    
Fig. 2. The graphics plots for obtained voltage degradation data of five LEDs over test time (left), adjusted equivalent time in actual 

operating temperature based on the measured temperature (right). 
 

The original voltage degradation data of five LEDs is shown in Figure 2. The horizontal line represents critical 
voltage thresholds for the voltage drop of LEDs corresponding to 20 % (V20) and 30 % (V30) of the initial voltage 
(Valis et al., 2023). The graph in Figure 2 demonstrates that during the test, at different temperatures, the slopes 
of the voltage curves are different; in particular, if the temperature increases about 10 oC, the gradient of the voltage 
curve decreases about twice, but if stretching to reach the actual time, they are the relatively same. This data is 
used to model the voltage degradation process of LEDs in the following sections.  



 

3. Approach Bayesian Optimized Gaussian Regression Method for the Voltage Degradation of LEDs with 
self-heating impact 

According to the study (Truong et al., 2022), the self-heating phenomenon causes changes inside the LED. 
However, monitoring and describing these changes are challenges that require respective measurement devices 
and deep knowledge of LED structure. The self-heating effects are shown through increasing temperature, 
which makes the temperature in the thermal chamber unstable as the designed testing temperature, mentioned 
in Section 3. We consider this effect to be a factor making the difference between designed testing conditions 
and actual testing conditions. Therefore, the aim is to figure out a relationship between voltage degradation, 
measured temperature, and previous voltage data (at some times in the past).  
This section describes the formulation and application of a Bayesian-optimized Gaussian regression to model 
the voltage degradation of LEDs that incorporates the self-heating phenomenon via the observed temperature 
within the thermal chamber. We propose a Gaussian regression model, which selects the logarithm of the 
likelihood function as the main objective function, using the Bayesian Hyperparameter Optimization method in 
conjunction with the L-BFGS algorithm to train and optimize model parameters. The aim is the maximization 
of the value of the objective function, with the ultimate goal of discerning optimal functions that accurately 
encapsulate the intricate relationship between LED voltage degradation, previous voltage data, and obtained 
temperature data. Each LED's voltage degradation data and corresponding observed temperature data are 
individually treated as training datasets for our analysis. The model's performance evaluation is conducted 
through metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R-squared (R2), and 
rank correlation ( ) are given by (Lewis, 1982): 
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where: RSS  Residual Sum of squares; TSS  Total Sum of squares; y are prediction values, y are observed 
values of output variables. To validate the robustness and generalizability of the model, it is subjected to 
validation using data from other LEDs.  

4. Results and discussions 

Within the confines of this article, the voltage data for LEDs #1 and #2, coupled with the corresponding measured 
temperature data, is systematically used as the training datasets, called Models #1 and #2. In each figure, the 
graphics plots are organized from left to right, presenting the results for each case with respective training datasets. 
This systematic arrangement facilitates a clear and intuitive progression through the visual representations, 
allowing for easy comparison and interpretation of outcomes across different LED scenarios. The simulation 
outcomes, encapsulating the model's predictive performance, are graphically presented in Figures 3, 4 and 5, while 
a comprehensive summary of key metrics and results is provided in Table 2.  
Figure 3 illustrates the congruity in the optimization process of The Bayesian Optimization method when 
employing the voltage data from diverse LEDs as the training dataset after 50 epochs. The process aims to optimize 
the hyperparameter set of the models consisting of kernel function parameters, sigma, etc., by minimizing the 
logarithm value of one and the cross-validation loss for regression, measured by five-fold cross-validation. The 
graph shows that the optimization process results for different LEDs are relatively similar, signifying uniformity 
during the optimization epochs and the feasibility of using the distinct LEDs' data for training. Figure 4 provides 
a visual comparison between observed and predicted voltage data across two cases, while Table 2 comprehensively 
evaluates modelling performance at different stages, namely the Training Stage, Testing Stage, and all data. 
In Figure 4, the green dot lines represent observed voltage data acquired from ADTs, and the red solid lines depict 



 

predicted voltage data derived from the Gaussian Regression simulation.  Based on the simulation results, the two 
models provide favourable, relatively accurate outcomes, as evidenced by the values of selected performance 
metrics in Table 2, demonstrating the efficiency of all models. The graphic plots in Figure 4 show that the 
prediction data is relatively similar to the observed voltage data. When LED#2 data is chosen as the training 
dataset, respective to Model#2, the models demonstrate better capabilities during the Training Stage, reflected in 
lower values of RMSE (approximately 36 %). In contrast, Model#1 provides better prediction abilities in the 
Testing Stage and for all data. Figure 5 indicates the relationships between observed data, predicted data and 
measured temperature of Models #1 and #2. 
 

 
Fig. 3. The results of the optimization process after 50 epochs of Model#1 and #2. 

 

  
Fig. 4. Comparison results between observed voltage data and prediction voltage data of Model#1 and  #2. 

 

   
Fig. 5. The relationships between the observed, predicted voltage and measured temperature for Model#1 and #2. 

 



 

Table 2. Performance comparison of two models in the Training Stage, Testing Stage and for all data. 

Metrics Model#1 Model#2 

 Training Stage

LogLikelihood(*) 4.1735e3 1.23e4 

MAE 0.00025 0.00016 

RMSE 0.00048 0.00021 

R-Squared 0.9989 0.9998 

Rank-Correlation 0.9868 0.9947 

 Testing Stage

MAE 0.00029 0.00345 

RMSE 0.00075 0.00363 

R-Squared 0.9867 0.9704 

Rank-Correlation 0.9782 0.9925 

 All data

MAE 0.00026 0.00082 

RMSE 0.00054 0.00163 

R-Squared 0.9993 0.9955 

Rank-Correlation 0.9930 0.9972 

 
In order to assess the adaptability of the proposed model, the voltage degradation data from other LEDs are used 
as validation datasets for each model. The performance metrics mentioned earlier are applicable for verification 
purposes. The validation results are given in Figures 6 and 7, along with a performance presentation in Table 3. 
Figure 6 visually illustrates the comparisons observed and predicted voltage data for LED#3, #4, and #5 using 
Models #1 and #2. Meanwhile, Figure 7 illustrates the boxplot distribution of errors for the corresponding LEDs 
and the error distribution of the selected training LEDs to capture the spread and central tendencies of errors 
observed in the model predictions for each model. 

Table 3. Validation results of two models with the voltage data of other LEDs. 

Metrics Model#1 Model#2 

MAE LED#3 0.00053 0.0366 

LED#4 0.00094 0.0356 

LED#5 0.0067 0.0243 

RMSE LED#3 0.00078 0.0367 

LED#4 0.0011 0.0357 

LED#5 0.0067 0.0243 

R-Squared LED#3 0.9937 0.9843 

LED#4 0.9943 0.9894 

LED#5 0.9950 0.9911 

Rank-Correlation LED#3 0.9959 0.9961 

LED#4 0.9920 0.9912 

LED#5 0.9960 0.9963 

 
The validation results highlight the robust performance of all models when using training datasets of different LEDs. 
Based on the simulation results, all models demonstrate good predictability for other LED data, validated by the value 
of performance metrics in Table 3. However, Model #1 provides better predictability for all LEDs #3, #4, and #5 than 
Model#2, and the prediction results for these LEDs are higher than the observed data, as shown in Figure 6 (left) and  
Figure 7 (left) (mean of errors is negative). In contrast, Model#2 provides smaller prediction results than the observed 
data, as seen in Figure 6 (right) and Figure 7 (right) (mean of errors is positive). The difference between the prediction 
data and observed data of Model#1 is the highest for LED#5, approximately 0.01 V, while this difference in Model#2 
is the highest for LED#3 and #4, approximately 0.03 V.  These differences are minor when compared to the voltage 
values of LEDs, but relatively significant when compared to their voltage variation range. This observation is 
substantiated by the visual distance between observed data and predicted data for each LED, highlighting nuanced 
differences in predictive accuracy across the models. 



 

            
Fig. 6. Comparison of the predictability of all models for the voltage data of other LEDs 

 

      
Fig. 7. Boxplot distribution of errors for LEDs in two modelling cases.  

In summary, the results collectively indicate that all models provide adaptability, suggesting a comparable training 
trajectory regardless of the specific LED under consideration, demonstrating generalizability, and showcasing a 
robust capacity to capture underlying patterns across LED voltage data. These models are effectively applied for 
modelling the voltage degradation of LEDs in the proposed ADTs. The subtle performance variations among the 
models underscore the importance of careful consideration and selection based on specific LED datasets and 
desired predictive outcomes. 

5. Conclusions 

In this study, a conventional Accelerated Degradation Test is conducted to acquire voltage degradation data, 
employing stepwise temperature changes and maintaining a constant current. This ADT distinguishes itself from 
previous studies by focusing on voltage as the monitored degradation parameter and concurrently recording the 
temperature within the thermal chamber with the high sample frequency. The Bayesian-Optimized Gaussian 
Regression is then used to model the voltage degradation, utilizing the observed data of each LED and the 
measured temperature as the training dataset. Various metrics are utilized to assess the model's performance, and 
validation is conducted across diverse LED datasets. 
The findings reveal that all models provide generalizability, demonstrating a robust capacity and strong 
predictability. This indicates their suitability for effectively modelling the voltage degradation of LEDs based on 
the acquired data. The study provides valuable insights into the performance and adaptability of the Bayesian-
Optimized Gaussian Regression model, underscoring its potential for accurately characterizing the voltage 
degradation behaviour of LED in the context of proposed accelerated testing. 
In future research endeavours, our focus will extend to conducting varied Accelerated Degradation Tests for LEDs, 
aiming to obtain diverse degradation data. This comprehensive approach seeks to provide a holistic view of the 



 

degradation process of LEDs under different conditions. Additionally, we plan to evaluate the performance of 
Gaussian Regression across this diverse degradation data to assess the model's efficiency. Simultaneously, our 
research will involve the simulation of alternative models, enabling a comparative analysis of their effectiveness 
in handling different datasets of LEDs. This comparative evaluation will contribute to a nuanced understanding of 
the strengths and limitations of various modelling approaches, ultimately guiding the selection of the most suitable 
methodology for accurately capturing the intricate degradation patterns of LEDs under varying conditions. 
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