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Abstract 

With the rapid development of industrial production processes towards large-scale, complexity, and intelligence, fault 
monitoring and diagnosis to eliminate potential risks are crucial in the industrial field. However, conventional data-driven fault 
diagnosis methods necessitate substantial historical data, and extensive computational support, lacking efficient edge 
deployment techniques, and are unable to achieve online model updates. In this paper, a fault diagnosis method for edge 
electromechanical equipment based on incremental learning and improved fuzzy broad learning system (IFBLS) is proposed, 
which utilizes fuzzy C-mean clustering improved by subtractive clustering to realize the improvement of the fuzzy broad 
learning system. The method achieves automatic hyperparameter selection and incremental learning of enhanced nodes. 
Meanwhile, the edge-end porting and deployment scheme is proposed to achieve broad learning system inference operations 
and online model on the STM32 microcontroller. Experimental validation is conducted using the NASA electromechanical 
actuator dataset, and the results demonstrate that the suggested fault diagnosis method achieves a high accuracy rate. 
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1. Introduction 

Fault diagnosis is a crucial task for ensuring the safe and reliable operation of industrial processes. Efficient 
and accurate identification of abnormal faults is essential for optimizing the operation of these processes. As 
industrial processes have become more complex over the years, ensuring their safety and reliability has become 
increasingly challenging (Yu et al., 2020). In aerospace systems, electromechanical actuators play a crucial role as 
key components. As a result, intelligent fault diagnosis has gained significance in research. NASA and Impact 
Technologies have published a paper stating that they have created a flyable testbed at NASA's Ames Research 
Center (Li et al., 2009). This test bed is used to analyze data and models of both normal and faulty states of 
electromechanical actuators (EMAs). 

To enhance the diagnostic capability of different faults, scholars have shown great interest in accurate and 
efficient data-driven fault diagnosis methods (Zhao et al., 2021). Machine learning technology has been widely 
used in intelligent industrial fault diagnosis, commonly used methods are support vector machine (SVM), random 
deep forest (RF), etc. (Zhao et al., 2021). In recent years, deep learning has been proposed and applied in fault 
diagnosis. Zhao et al. proposed a PIML-based parameter estimation method demonstrated by a case study of dc
dc Buck converter. It overcomes the challenges related to training data, accuracy, and robustness which a typical 
data-driven approach has (Zhao et al., 2022). Yang et al. proposed an EMA fault diagnosis method based on a 
convolutional neural network (CNN) and maximum mean deviation (Yang et al., 2019). However, the deep 
learning approach has certain shortcomings and limitations (Chen et al., 2018; Liao et al., 2023):  

 It requires a significant amount of historical data to adjust the deep structure, which may be challenging 
to obtain in real industrial processes;  

 As deep learning continues to evolve, the demand for computing power is increasing, making it difficult 
to deploy in the front end of industrial equipment;  

 A complete retraining process is necessary to update the model for new samples or fault types. 
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Moreover, as the Internet of Things (IoT) rapidly advances, an increasing number of enterprises and factories 
are integrating their equipment with the IoT, which 

Zhang et al., 2023 . Consequently, the conventional fault monitoring and diagnostic system is no 
longer satisfy the requirement of modern industrial production and manufacturing. Edge computing is now being 
used in intelligent industrial fault diagnosis.  The edge device refers to a computational model that operates closer 
to the equipment's front end, away from the center of the Internet. This new model allows for tight integration with 
industrial equipment, resulting in enhanced real-time monitoring and faster response to faults (Shi et al., 2016). 
Crocioni et al. conducted a study on the lifespan of lithium batteries. They developed and trained a neural network 
model on a PC, which was later transferred to an STM32 MCU (Crocioni et al., 2020). Zhang et al. optimized the 
neural network architecture of a 2D neural network (CNN2D) and successfully implemented it on an STM32 MCU 
for the recognition and classification of bearing fault vibration signals (Zhang et al., 2022). However, due to the 
high computation cost of deep learning models and the resource constraint of mobile and embedded devices, it is 
hard to directly deploy deep learning models on mobile and embedded devices.( Chen et al., 2020) The most 
cutting-edge issue in the current academic community revolves around deploying fault diagnosis algorithms on 
edge devices, particularly MCU devices. 

The Broad Learning System (BLS) is an efficient incremental learning system that does not require a deep 
architecture (Chen et al., 2018). It is designed to solve problems in deep learning. BLS is designed to utilize the 
mapping features of input data as inputs to a random vector functional link neural network(RVFLNN). This 
approach offers a simple structure, fast training, high accuracy, and incremental learning (Ren et al., 2021).  BLS 
provides a new method for intelligent fault diagnosis at the edge end.  

This paper presents an improved fuzzy broad learning system in fault diagnosis. The main contributions of this 
research are as follows:  

 The fuzzy C-mean clustering technique is improved by incorporating subtractive clustering, resulting in 
an improved fuzzy broad learning system. This technique enhances the accuracy of fault diagnosis by 
optimizing the hyperparameter configuration approach;  

 The improved fuzzy broad learning system preserves the traits of traditional BLS while enabling 
incremental learning of improved nodes. This allows for dynamic adjustment of the model structure, 
thereby enhancing the accuracy of fault diagnosis;  

 A deployment scheme is proposed to implement the broad learning system on an STM32 microcontroller, 
enabling intelligent fault diagnosis at the edge devices. 

The rest of this article is organized as follows: Section 2 presents BLS, FBLS, and IFBLS. Section 3 explains 
the deployment method of IFBLS on STM32. Section 4 analyzes the performance of IFBLS on PC and STM32 
using the NASA electromechanical actuator dataset. Lastly, Section 5 offers discussion and conclusions. 

2. Improved Fuzzy Broad Learning System 

2.1. Broad Learning System (BLS) 

Chen et al. proposed a width learning system based on a random vector function connected network (Chen et 
al., 2018). The hidden layer of BLS consists of feature nodes and enhanced nodes, as shown in Figure 1. 

 

 
Fig. 1. Broad Learning System Structure Diagram. 

Firstly, the features mapped by the input data  are used as the feature nodes of the network. 
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where ,  are the activation functions, ,  are the random weights and biases, respectively, which 
are fine-tuned by the sparse self-encoder. The feature layer of the  group of feature nodes is denoted as 

. 
Second, the mapped features are augmented into enhanced nodes with randomly generated weights  

. (2) 

where , are the activation functions, , are the random weights and biases, respectively, and 
the enhanced layer of the  group of enhanced nodes is denoted as . 

Finally, all mapped features and enhanced nodes are directly connected to the output and the BLS output is 

. (3) 

where  is the weight of the hidden layer to the output layer, let , the above equation is simplified 
as , and the pseudo-inverse ridge regression technique is used to solve for the desired connection weights 
(Huang et al., 2022). 

. (4) 

where is  the regularization factor. 

2.2. Fuzzy Broad Learning System (FBLS) 

Fuzzy Broad Learning System (FBLS) is a hybrid of the Takagi-Sugeno fuzzy system() and the traditional BLS, 
which leverages fuzzy logic theory to learn fuzzy rules (Feng et al., 2020). This approach maintains the fast 
computational properties of traditional BLS while also improving its ability to handle various fuzzy logic 
problems. Additionally, the fuzzy rules learned by FBLS are interpretable. The structure of Fuzzy-BLS is depicted 
in Figure 2. (Zhou et al., 2021). 
 

 
Fig. 2. Fuzzy Broad Learning System Structure Diagram. 

 
FBLS replaces the feature nodes in the traditional BLS with fuzzy subsystems. The structure of each fuzzy 

subsystem is shown in Figure 3. TS fuzzy system, a commonly used fuzzy model, has been widely applied in 
different fields, including nonlinear system modeling, identification, fuzzy control, and fuzzy inference (Li et al., 
2013). In Takagi-Sugeno fuzzy system, let  , , there exists 

 rule, i.e.   is  and  is and  is ,  ,i.e. 

 (5) 

where  is the coefficient. Then, the th fuzzy subsystem of the training sample  can be expressed as 

. (6) 

 can be found by the following formula. 

, (7) 

, (8) 

. (9) 



 

where  is taken as 1 and  is directly obtained by  algorithm. The output vector of the th fuzzy 
subsystem for all samples is denoted as . Then the output of  fuzzy subsystems is 

. 
The outputs of the fuzzy rules generated by each fuzzy subsystem are not immediately summarized into a single 

value but are all sent to the enhanced layer for further nonlinear transformations to get the 

. (10) 

The enhanced layer of the  group of enhanced nodes is denoted as . To preserve the 
input characteristics, the defuzzification output of all fuzzy subsystems. 

. (11) 

where  are the coefficients, then the features layer can be expressed as 

. 

where . . . 

The output of  fuzzy subsystems is . The output of the enhanced layer is combined to 
obtain the final model output. 

. (13) 

where , the final model output can be pushed (Zhou et al., 2021). 

. (14) 

The weight is 

. (15) 

where . 
 

 
Fig. 3. Takagi-Sugeno Fuzzy System Structure Diagram. 

 

2.3. Improved Fuzzy Broad Learning System(IFBLS) 

In FBLS, K-means clustering is commonly used, along with other clustering algorithms such as fuzzy C-means 
clustering(FCM) and subtractive clustering(SCM). The advantage of fuzzy C-means clustering is its ability to use 
membership degrees to represent the extent to which data points belong to a specific class. When the initial cluster 
center is selected appropriately, it can achieve optimal calculation accuracy. However, there are also drawbacks. 



 

The disadvantage lies in the number of cluster centers, which must be predetermined. In subtractive clustering, the 
candidate set of cluster centers is based on data points, and its computational complexity is independent of the 
input data dimension. Instead, it has a simple linear relationship with the number of input data points. As a result, 
the algorithm can calculate quickly. Nonetheless, the drawback of subtractive clustering is that the desired cluster 
center must be among the original data points (Wu et al., 2021). In this paper, the optimal number of cluster centers 
for FCM is determined through subtractive clustering. The obtained cluster centers are then used as the initial 
centers for FCM, improving its performance. However, a small adjustment needs to be made to the subtractive 
clustering centers because they are derived from the original data set. If used directly in FCM, a division by zero 
error may occur. By replacing the traditional K-means clustering with the improved FCM, the enhancement of 
FBLS is achieved. IFBLS enables the automatic selection of the hyperparameter for the number of cluster centers. 
The algorithm is shown in Algorithm 1. 
 

Algorithm 1 Improved Fuzzy Broad Learning System 
Input: training set, feature nodes, fuzzy subsystems, enhanced node groups  
Output: weight matrix W 

1. Initialization coefficients  , using a uniform distribution in [0,1]  
2. for i = 1 to n do 
3.     Apply subtractive clustering to the training set to get the number of cluster centers 

and the value of the cluster centers 
4.     Use the number of cluster centers obtained in Step 3 as the number of fuzzy C- 

means cluster centers, and the value of the cluster centers as the fuzzy C-means to 
initialize the cluster centers to obtain a new cluster center value 

5.     Use the obtained cluster center value initial Gaussian membership function center 
6.     for s = 1 to N do 
7.         Calculate  
8.     end for 
9.     Calculate  
10. end for 
11. Calculate  

 

2.4. Incremental learning By Adding Enhanced Nodes 

When the improved fuzzy width learning system cannot achieve the desired performance after the training, it 
is necessary to add new enhanced nodes to reduce the loss function, let the addition of  enhanced nodes, 

 and  are the feature and enhanced layers before the enhanced nodes are added, 
 and  are the feature and enhanced layers after the enhanced 

nodes are added, and  is the weights of the new enhanced nodes, then there are (Chen et al., 2018) 

. (16) 

where , , , if 

, , if , , so the new weights are updated as follows. 

. (17) 

3. Edge Device Implementation 

Neural networks for implementing optimization on embedded devices have gained significant attention from 
both academia and industry. The typical neural network approach comprises two key components: training and 
inference (Ying et al., 2021). Training involves searching for suitable network parameters using predefined dataset 
configurations, while inference entails obtaining output results from the trained neural network using new data. 
Typically, the operation of neural network reasoning is primarily implemented in embedded systems. Embedded 
microcontroller unit (MCU) devices have higher integration than MPUs, with smaller sizes and lower power 
consumption. MCUs are used as edge nodes and deployed with intelligent fault diagnosis algorithms, which can 



 

further enhance the real-time and fault response speed of monitoring systems. In this paper, an improved fuzzy 
broad learning system deployment scheme is applied to the edge end. The goal is to achieve intelligent fault 
diagnosis on an STM32 microcontroller using improved fuzzy broad learning system inference operation (Chen 
et al., 2021). 

3.1. Model Train 

Begin by initializing the system, preprocessing the data, and seeing the initial parameters. These parameters 
include the number of feature nodes and enhanced nodes. Choose tansig as the activation function and set the 
initial network structure. Model train is completed on the computer side using the MATLAB software platform 
for the improved fuzzy broad learning system to obtain the weights of the hidden layer to the output layer  and 
the parameters of , , , . If the fault diagnosis rate does not meet the desired performance, the model 
network can be improved by the incremental learning of enhanced nodes. 

3.2. Functions Encapsulate 

To execute the model's reasoning process at the edge end, we need to encapsulate the necessary operation 
processes for model reasoning into a function. This function will take the training dataset, the weights, and 
parameters obtained in model train as input, and provide the fault diagnosis results as output. Then use the 
MATLAB Coder toolbox to generate the lib library from the function packaged. Typically, the mex file is 
generated first, executed to verify the translation result, and then the lib library is generated. 

3.3. Model optimization 

To enhance the operational efficiency of the generated lib library file on STM32, optimization can also be 
applied to algorithms, parameters, and other aspects. For storing weight coefficients, a fixed-point quantization 
method can be used. This method is suitable for representing network weight coefficients using 8-bit data. In the 
calculation process, the multiplication method for reducing subscript calculation is used to minimize the use of 
multiplication. For instance, when performing the operation , the weight data  is accessed in the form 
of a linear array, and the internal data of the weight data  is accessed in the form of a multiplication calculation 
array subscript during specific calculations. This multiplication can be eliminated (Ying et al., 2021). 

3.4. Model transplantation 

Use Keil uVision5 to create the project file, port the lib libraries to the project file, and declare them. Copy the 
MATLAB header functions to the project file and declare them. Complete the header file declaration, initialization, 
and configuration of the main program in the project file main.c. Additionally, add any other necessary functions 
or project modules based on specific usage requirements. Finally, compile the program and burn it to the STM32 
for verification. 

4. Experimental Results 

4.1. Experimental Data Set 

To validate the performance of the model proposed in this paper, the experimental dataset used is NASA's 
published electromechanical actuator dataset. NASA has developed and built a Flyable Electromechanical 
Actuator (FLEA) test bed for gathering data while the electromechanical actuator is in operation. The collected 
data includes four types of faults: normal (Normal), ball screw jam fault (Jam), ball screw spalling fault (Spall), 
and motor winding short circuit fault (Motor) (Yang et al., 2019; Balaban et al., 2009). Choose six attributes of 
the Nut X Accelerometer Axis Y, Nut X Accelerometer Axis X, Nut X Accelerometer Axis Z, Motor X 
Temperature, Nut Y Accelerometer Axis X, Nut Y Accelerometer Axis Y, and proceed with subsequent 
experiments (Chen et al., 2022). 

4.2. Model Parameter 

The following experiments were conducted using the MATLAB R2022a software platform on a computer with 
an Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz and 64GB RAM. 



 

In this section, we will focus on selecting appropriate parameters to support subsequent experiments. Within 
FBLS, there are three main hyperparameters: , , and . Initially,  is fixed at 3 and the test accuracy is 
evaluated for varying values of  and . Figure 4 illustrates the impact of  and  on training accuracy 
and time. It is evident that performance is consistent within a certain range of  and  values, resulting in a 
relatively satisfactory diagnostic outcome. 
 

 
Fig. 4. Training Accuracy and Training Time of IFBLS with different Nm and Ne for the NASA electromechanical actuator dataset. 

However, it is evident that as the number of nodes increases, both the accuracy rate and the training time also 
increase. Therefore, it is crucial to select an appropriate parameter. Traditionally, the grid search method is 
commonly employed for this purpose, although it is time-consuming and costly. For instance, when considering 
the hyperparameter value range of [0,10], grid search requires 1000 iterations to determine the optimal value. 
Figure 5. illustrates the effect of varying the Range of Influence of the Cluster Center on the Number of Cluster 
Centers, Training Accuracy, Testing Accuracy, Training Time, and Testing Time for the NASA electromechanical 
actuator dataset. It is evident that as the Range of Influence of the Cluster Center increases, the number of cluster 
centers decreases, along with a decrease in time cost. However, this increase also results in a decrease in accuracy 
rate, which aligns with the expected outcome. 

 
Fig. 5. The effect of varying the Range of Influence of the Cluster Center on the Number of Cluster Centers, Training Accuracy, Testing 

Accuracy, Training Time, and Testing Time for the NASA electromechanical actuator dataset. 

 

4.3. Model Effect Analysis 

In this section, we present the experimental results that validate the model's effectiveness. Firstly, the various 
clustering methods employed by FBLS are examined, as depicted in the table. The unified network structure 
utilized for comparison is 3-6-20. It is evident from the results that the model proposed in this paper achieves the 
highest accuracy rate in fault diagnosis. However, this comes at the expense of increased time consumption 
compared to the other methods. Nonetheless, since there is no requirement for conducting a mesh search for the 



 

 hyper-parameters, a suitable network structure can be directly determined. Consequently, in practical 
applications, the time cost may be reduced. The result is shown in Table 1. 
 

Table 1. Performance comparison on the NASA electromechanical actuator dataset with different clustering methods. 

Model Nf Nm Ne Train Time Train Accuracy Test Time Test Accuracy 
K-means 3 6 20 1.7149 97.5833% 0.10945 97.2206% 
FCM 3 6 20 1.9068 97.6733% 0.10591 97.4604% 
SCM-FCM 3 6 20 1.9539 97.7533% 0.10459 97.7805% 

 
Compare the model with FBLS, BLS, and SVM, as demonstrated in Table 2. The IFBLS model exhibits a 

notable enhancement in accuracy, while still preserving the computational efficiency of the BLS model. In 
comparison to SVM, the training time is significantly faster. For comparison and improvement of the FBLS model, 
the network structure of FBLS and BLS is standardized to 3-6-20. The SVM model utilizes the libsvm matlab 
toolbox for determination (Chang et al., 2011). 

Table 2. Performance comparison of SVM, BLS, FBLS, and IFBLS for the NASA electromechanical actuator dataset. 

Evaluation Indicators IFBLS FBLS BLS SVM 
Training Time 1.9539 1.7149 1.2935 28.707 
Training Accuracy 97.753% 97.5833% 95.637% 91.533% 
Testing Time 0.10459 0.10945 0.0927 0.7165 
Testing Accuracy 97.980% 97.2206% 95.541% 91.642% 

 
To evaluate the incremental effect of the model-enhanced node, the initial network structure is set as 2-6-20. 

Each time, the enhanced nodes are dynamically increased by 20, resulting in a final structure of 2-6-100. Table 3 
displays the results, indicating that the model accuracy improves to some extent as the enhanced nodes increase. 
This incremental approach proves effective. In cases where the improved fuzzy width learning system fails to 
achieve the desired performance after training, adding new enhanced nodes can enhance the diagnostic accuracy. 

Table 3. Performance comparison on the NASA electromechanical actuator dataset with different numbers of enhanced nodes. 

Nf Nm Ne Train Accuracy Test Accuracy 

2 6 

20 97.49% 97.3405% 
40 97.8583% 97.8204% 
60 97.8783% 97.8371% 
80 97.8217% 97.8805% 
100 98.145% 98.1006% 

 
The experiments above demonstrate that an improved fuzzy broad learning system performs effectively in 

diagnosing faults in the NASA actuator dataset. It maintains the learning speed of the BLS method, allowing for 
efficient model training on a regular PC with less practice required. Additionally, compared to other methods, the 
accuracy of fault diagnosis has been significantly improved. Furthermore, the incremental learning approach using 
augmented nodes further enhances the accuracy of model diagnosis. IFBLS also enables quicker determination of 
a reasonable network structure, eliminating the need for grid search and other time-consuming methods. This 
reduces the additional time cost involved. 

4.4. Edge Devices Performance Analysis 

Using the porting method outlined in this paper, the enhanced model has been migrated to the STM32 
microcontroller, enabling the execution of width learning inference operations on the STM32H750XBH6 
microcontroller with 2MB FLASH. The program's current memory capacity is 25.6kB FLASH and 9.1kB RAM. 
The power needed by the STM32 to execute the fault diagnosis program is 0.0418W. The running results are as 
shown in. Figure 6. The findings are presented in Table IV. In comparison to the computer-side implementation, 
the accuracy of width learning troubleshooting at the edge remains nearly unchanged, but the running time is 
increased due to limited computing power. 

 
 
 
 



 

Table 4. Performance comparison on the NASA electromechanical actuator dataset with PC and Edge Devices. 

Device PC MCU 

Testing Accuracy 96.26% 96.12% 

Testing Time 0.11s 0.46 s 

 
 

 
Fig. 6. The diagnosis results of the STM32 microcontroller edge terminal fault on the NASA electromechanical actuator dataset. 

5. Conclusion 

In this paper, we present a fault diagnosis method for edge electromechanical equipment based on an improved 
fuzzy broad learning system. The method is evaluated using NASA-collected data from electromechanical 
actuators. While preserving the benefits of a simple structure and fast training speed found in traditional BLS, we 
utilize fuzzy C-means clustering enhanced by subtraction clustering to address the issue of employing a grid search 
approach for the hyperparameter configuration of feature nodes. This enhancement aims to improve the fuzzy 
broad learning system and enhance the accuracy of fault diagnosis. It proposes an incremental learning approach 

's accuracy. The improved 
fuzzy broad learning system enables the inference operation to be performed on the STM32 microcontroller. This 
allows for close integration with industrial equipment at the edge, resulting in enhanced real-time monitoring and 
faster response to faults. 
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