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Abstract 

The ever-increasing scale and complexity of modern systems presents engineers with the inevitable challenge of developing 
more efficient yet comprehensive computational tools that enable sound analysis and thus ensure reliable system operation. In 
this paper, the Continuous-State Survival Function (CSSF) of coherent systems is investigated, and the Diagonally 
Approximated Signature (DAS) is generalised to systems with multiple component types and utilized as a corresponding 
surrogate model. The proposed concept is based on a combinatorial decomposition and aggregation strategy that is adapted 
from the concept of survival signature. This provides the advantageous property of separating topological and probabilistic 
information and component probability structure. Potentially high-dimensional coherent structure functions form the basis of 
the analysis. The proposed approach enables the direct computation of the CSSF using explicit formulas and a stored DAS, 
avoiding the costly online Monte Carlo simulation (MCS) in repeated model evaluations for varying component probability 
structures. The case studies underline the theoretical findings and, in particular, the high computational efficiency of the concept 
of the condensed DAS. 
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1. Introduction 

Engineering systems, encompassing infrastructure networks, industrial plants, and complex machinery, are 
pivotal to the advancement and development of modern societies. These systems, deeply integrated into societal 
frameworks, significantly influence both the economy and daily life. However, they are subject to degradation due 
to environmental and operational factors, leading to diminished performance or, in extreme cases, complete failure. 
Therefore, ensuring the continuous functionality and reliability of these systems is critical for both economic and 
safety reasons. This necessitates informed decision-making in their design and maintenance, especially as these 
systems grow in size and complexity in an increasingly dynamic and unpredictable world. To achieve this, 
accurately assessing the system's reliability over time is crucial. The structure-function is a typical approach to 

, 2010; 
Coolen and Coolen-Maturi, 2016). Thereby, multi- and continuous-state considerations become increasingly 
important to achieve a better understanding of the system behavior and achieve more safety and higher 
functionality with fewer resources (Lisnianski and Frenkel, 2012; Cellier and Greifeneder, 2013). Recent 
approaches include advancements in the modelling of continuous-state degradation processes, compare 
(Kharoufeh and Cox, 2005; Giorgio et al., 2011; Rui et al., 2020). 

An efficient method for modelling the reliability of systems with various component types is the concept of 
survival signature, as developed by Coolen and Coolen-Maturi (Coolen and Coolen-Maturi, 2013, 2016). This 
concept stands out from traditional methods by distinctly separating the topological aspects of the system from the 
probabilistic characteristics of its components. The separation simplifies the computational process, which is often 
required in design and maintenance, as highlighted by Patelli et al. (Patelli et al., 2017). This efficiency is 
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particularly beneficial in reducing computational demands during repeated model evaluations, bypassing the need 
for extensive and redundant analysis of the topological system model. 

However, the original form of the survival signature has a limitation: it only considers binary states of 
components and systems. Considering the continuous performance states of components and systems is essential 
for thorough reliability analyses of real-world systems. To address this, several researchers developed approaches 
for considering discrete or continuous-state multi-state systems, cf. (Eryilmaz and Tuncel, 2016; Liu et al., 2018; 
Qin and Coolen, 2022). Further, Winnewisser et al. introduced a novel surrogate modelling approach (Winnewisser 
et al., 2023), referred to as the concept of diagonally approximated signature (DAS), based on an unconventional 
shift of the perspective and modelling framework. This approach builds on the survival signature concept but 
further enables the consideration of high-dimensional coherent structure functions that describe the interplay 
between continuously deteriorating components and the continuous-state performance of the system. This method 
allows for the direct computation of a continuous-state survival function utilising an explicit formula and a stored 
DAS. This approach not only bypasses the need for online Monte Carlo simulations but also overcomes the binary 
state limitation, offering a more comprehensive analysis of system reliability. 

The DAS concept proposed in (Winnewisser et al., 2023 was limited to considering components of a single 
type. However, this constraint is inadequate for real-world applications, where systems often comprise multiple 
types of components (Feng et al., 2016). In order to address this gap, this paper introduces novel developments, 
extending the concept of DAS to systems with multiple component types. An aggregation method within the DAS 
framework condenses the fundamental DAS and facilitates tremendously increased efficiency. The proposed 
developments not only enhance the accuracy of reliability assessments but also contribute to more effective 
maintenance and design strategies, crucial for the sustainable operation of modern engineering systems. 

The paper is structured as follows: Section 2 briefly summarises the theoretical fundamentals. The proposed 
methodology, including the reformulated and extended formulas for computing the survival function when 
pursuing a continuous-state perspective, are presented in Section 3. Further, in Section 4, the efficiency and 
accuracy of three different approaches is investigated in two case studies. Section 5 concludes the findings and 
provides possible future directions to further enhance the concept of DAS. 

1. Theoretical Fundamentals 

1.1. Structure Function 

The structure function of a system is a fundamental concept for modelling the system topology in reliability 
analysis. As basis for the proposed methodology, let there be a structure function  that describes the system 
topology, i.e., it maps the component states to the system state. Assume that the considered structure function is 
time-invariant. It can be defined in a binary-state context as . Thereby,  is 
the according state vector representing the potentially time-dependent and random state of  components. This 
consideration is the basis for the considerations in (Coolen and Coolen-Maturi, 2013). In the discrete multi-state 
context as , compare (Eryilmaz and Tuncel, 2016), or from a continuous-state 
perspective as  

Binary-state, discrete multi-state, as well as continuous multi-state structure functions can be coherent. In 
accordance with the definition in (Hudson and Kapur 1983), a system is coherent if  is surjective,  is 
monotone and non-decreasing, i.e.,  if , and there are no inessential components, i.e., each 
component influences the system performance at some point. 

1.2. Continuous-State Survival Function  

In this work, the probability that the random state variable  of some entity under consideration is greater or 
equal to the considered state  at given time t is investigated and hereafter referred to as the Continuous-State 
Survival Function (CSSF) of the according entity. It is denoted by 

 

where is the random system or component performance state variable in the interval [0,1]. Note that  
can also be characterized in terms of the random failure time variable  given a considered performance state . 
However, it is exactly this shift from the consideration of random failure times with respect to some state to the 
consideration of random performance states with respect to some point in time that allows for the proposed 



 

developments. For more detailed information on the interpretation and establishment of the CSSF, see 
(Winnewisser et al. 2023).  

1.3. Limit State Analyses for Evaluating Discrete Multi-State System Reliability 

Consider a system with a coherent, time-invariant, and continuous-state structure function  as discussed 
in section 2.1. Assume that the performance state  of the -th component with  is random at given 
time  and follows the probability density function . Accordingly,  denotes the joint probability 
density function characterizing the random component performance state vector . Note that 

, where  refers to the domain in the 
interval  with values that are greater than state . Correspondingly, the overall domain for the component 
state vector  is .  

The aim of the discrete multi-state reliability analysis is the computation of  that is the CSSF of the 
considered system with respect to the underlying structure function  given some component probability 
structure. Hereafter, denote  as  and recall . Then, the CSSF can be evaluated 
by integrating the joint probability density function  over the domain  that meets the threshold for the 
system performance:  

 

The domain considered for integration can be extended to the overall domain  by weighting this expression 
with the indicator function. This corresponds to a limit state analysis that also can be expressed as Monte Carlo 
Simulation (MCS) as 

 

where  is the -th state vector sample of overall  Monte Carlo samples from the joint probability 
distribution  for given point in time .  
  

1.4. Classifications of the Structure Function from a Diagonal Perspective 

Considering a coherent structure function that maps the continuous-state performance state of  components to 
the continuous-state performance state of the system, two properties with multiple categorisations are presented:  

At first, the diagonal state sign is assigned as diagonally state positive if it holds that  
with  and . Analogously, the terms diagonally state neutral and diagonally state 
negative correspond to the conditions  and , respectively. Fig. 1 illustrates these various 
assignments  

of the diagonal state sign for four arbitrary systems. A coherent continuous-state structure function can also be 
partly diagonally state positive, partly neutral and partly negative, cf. Fig. 1. 

Secondly, the coherent structure function can be classified in terms of its symmetry along  for  and 
. Fig. 2. shows contour plots of a symmetric coherent structure function (a) and an unsymmetric coherent 

structure function (b).  

Fig. 1. Various possible assignments of the diagonal state sign. 



 

 
 
 
 

 Fig. 2. Contour plots of a system that is (a) diagonally symmetric and (b) diagonally unsymmetric. 

2. Proposed Methodology: The Concept of Diagonally Approximated Signature 

The concept of the Diagonally Approximated Signature (DAS) was first presented in (Winnewisser et al. 2023) 
as a surrogate modelling approach for evaluating the CSSF of potentially continuous-state systems more efficiently 
when it comes to repeated model evaluations. It was inspired by the concept of survival signature introduced in 
(Coolen and Coolen-Maturi, 2012) and its extensions to discrete multi-state considerations as in (Eryilmaz and 
Tuncel, 2016) and (Qin and Coolen, 2022) and the continuous multi-state perspective, as in (Liu et al., 2018). All 
these concepts share the combinatorial decomposition and aggregation of the component state space that enables 
reduced computational cost. Thereby, the concept of DAS preserves the advantages separation property while 
being applicable to systems that are described as coherent, discrete or continuous multi-state structure function, 
mapping component to system performance state. Similar to the other concepts of (survival) signature, the DAS 
values are evaluated in a pre-processing step and can be reused when investigating the system reliability for various 
component probability structures. The result of the concept of DAS is the true CSSF or at least an underestimation 
but never an overestimation with respect to the considered component probability structure. The quality of this 
result in terms of difference between the true CSSF and via DAS evaluated CSSF is hereafter referred to as error 
margin and depends on the characteristics of  from a diagonal perspective.  

2.1. Fundamental Formula for the Consideration of a Single Component Type 

The fundamental formula of the concept of DAS is derived from a combinatorial decomposition of the 
component state space based on the number of components that function in state  or above. This decomposition 
can be outlined as 

 

Thereby, refers to all possible combinations of the component state vector  or the hypervolume over  
in the subspace  that fulfills the criteria . This combinatorial decomposition also holds true for the 
overall domain  

 



 

for any considered state . The binomial coefficient  is further denoted as  and varies in terms  the 
number of components working in state  or above.  is the number of all possible permutations of  with 

, where  means that the component is working in state  or above and  means that the component 
state is smaller than state . All possible assignments of  corresponding to such a permutation define a subspace 

 with respect to the considered state .  
Assume that the structure function of the considered system is coherent and time-invariant and the comprised 

components have the same type. This means that the random states or failure times are assumed to be . Formally 
this can be described as  =  for . Further, let the structure function be diagonally 
state neutral over the entire diagonal . If the structure function is also diagonally state extreme or at least 
constant, the concept of DAS gives the true solution of the CSSF. It holds true that  

 

where  is the CSSF representing the continuous-state reliability of the considered system. 
For a more detailed derivation of the combinatorial decomposition and the fundamental formula, see (Winnewisser 
et al.,2023).  

Note that from the continuous-state perspective all conventionally in binary-state system reliability analysis 
considered structure functions are diagonally state neutral and diagonally state extreme. This corresponds to a 
simplification of the underlying problem that mitigates a comprehensive analysis in terms of a minimised CSSF 
error margin. In contrast, the concept of DAS allows for a tradeoff between computational cost and a reduced 
CSSF error margin when it comes to more complex structure functions that describe the considered problems from 
a continuous-state perspective. 

The DAS values  are evaluated in a pre-processing step by performing  one-
dimensional optimizations along the diagonals defined by the subspaces . The aim of this optimisation is to 
find the minimum value  that still fulfills the criterion  along the diagonal defined by the 
permutation of  with , where  and . The optimization procedure should 
minimize the error between the true value  for which  and the result of optimization procedure 

. A basic algorithm that ensures the evaluated CSSF to underestimate the true CSSF, i.e., to be on the safe 
side, was presented in (Winnewisser et al., 2023). 

2.2. Advantageous Representation and According Formula 

The fundamental formula can be reformulated in an advantageous manner to allow for vectorisation of the 
computation of the CSSF. Therefore, let  be a three-dimensional matrix, where  is a two-
dimensional matrix that comprises  values of  as rows and for each considered state  as 
columns. Similarly,  counts the occurrences of the values  in  rows and columns for 
considered state  and  holds the corresponding number of components working in state  or above. In 
accordance with this representation, the formula for an underapproximation of the CSSF can be given as 

 

Note that Equation (6) was reformulated to an inequality here. Consequently, the statement holds true for 
systems with a structure function that is diagonally state positive or at least neutral and an arbitrary diagonal state 
order, cf. (Winnewisser et al., 2023). Thereby, the CSSF evaluated by means of the concept of DAS underestimates 
the true CSSF in the worst case.  

In addition, the newly introduced representation  was integrated.  is the only additional parameter 
compared to the previous formulation and has no advantage yet. For this basic form,  for every  and 
. However, introducing this occurrence counter   enables to reduce the sum over  tremendously 

depending the according aggregation strategy. 

2.3. Extended Formula for the Consideration of Multiple Component Types 

Consider a system with coherent and time-invariant structure function  and components of multiple types. 
This means that among the n components components share the same type  and that their random 
performance states at given time  are assumed to be . Formally, the CSSFs characterizing the random 



 

performance states for components of the same time can be summarized as  =  if the -th 
component is of type . The representation of the DAS should be adapted accordingly. Thus, let 

, where  is the two-dimensional matrix of size  storing the 
number of components of type  working in state  or above. Then, the extended formula of the concept of DAS 
for the consideration of systems with multiple components types can be expressed as 

 

Similar to Equation (7), this inequality can be vectorized when implemented. This significantly increases the 
computational efficiency. However, combinatorial theory suggests that the computational cost will grow 
exponentially with increasing number of components . Consequently, aggregation strategies should be identified 
in order to restrain the computational cost. 

2.4. Aggregation Strategies for the Condensation of the Diagonal Approximated Signature Psi 

Some reasonable aggregation strategy should be applied to  to restrain the computational cost when it comes 
to systems with a large number of comprised components . Thereby, the sum over  should be 
reduced to a sum over , where . Then, an underapproximation of the CSSF for a system with multiple 
component types is obtained with increasing computational efficiency when following the formula given as 

 

Similar to the concept of survival signature, the DAS can be condensed in terms of ,  the number of 
components of type  working in state  or above, for . In order to condense , find the minimum 
values of   of all permutation   for all possible combinations of the numbers of 
components of type  working in state  or above that fulfill the condition . Thereby,  
comprises the number of according permutations of the component state vector that were joined together. Note 
that storing only one minimum value is the cheapest aggregation strategy in terms of computational cost. However, 
this will also generate the largest CSSF error margin in terms of its volume over the entire domain. Consequently, 
choosing a reasonable aggregation strategy always comes along with the tradeoff between computational cost and 
a minimum error margin. 

3. Case Studies 

As basis for the analyses, consider a system that has a coherent and a diagonally state positive structure function 
mapping continuous-state component performances to the continuous-state system performance. As in 
(Winnewisser et al., 2023), such a structure function can be established for an infrastructure network, where the 
system topology is modeled as a graph and the network efficiency is considered as the performance of the system. 
Route travel times are assigned as edge weights between nodes representing crossways and cities and monotone-
increasing stochastic road degradation affects the travel times along edges. For the current case studies, simpler 
structure functions were investigated. However, these share the same properties as the more realistic infrastructure 
models. The fundamental form of the coherent structure function is given as 

 

 and . The both case studies will differ in terms of  that is a -
dimensional parameter vector comprising positive natural numbers. The component degradation was assumed to 
be modeled by a family of Beta distributions depending on the according parameters, assured to be monotonically 
decreasing over time. Two component types were assumed. The corresponding time-dependent  and  
parameters dependent on the component type  and are determined as , 

, , . 



 

3.1. Case Study 1: Computation Time Study 

First, consider the defined structure function with , where  for . A 
study was conducted investigating the required computation times for evaluating the entire CSSF or an 
underapproximation of it for . The CSSF is estimated by means of MCS and approximated 
via the concept of DAS represented via  (DASP) and the condensed representation of the DASP (DASPC), 
compare formulas 1,2,3. Component types are assigned as 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1] for 

. The CSSF was evaluated for equidistant  in  and equidistant 
 in the interval . 

The results of the obtained CSSFs are illustrated in Fig. 3 and Fig. 4 for . An estimate of the 
true solution obtained by MCS with 10 000 samples for each state  and time step  is shown in Fig. 3 a). Slight 
variations can be observed for all contour lines but particularly for the contour line . The 
underapproximation of the CSSF computed by means of DASP is illustrated in Fig. 3 b). A significant CSSF error  

Fig. 3. Case Study 1: (a) CSSF via MCS; (b) CSSF via DASP. 

Fig. 4. Case Study 1: (a) Error between CSSF (MCS) and CSSF (DASP); (b) Error between CSSF (DASP) and CSSF (DASPC). 

 

margin can be observed when considering the error between the CSSF from MCS and DASP in Fig. 4 a). Note 
that the error margin can be further reduced with accordingly adapted formulas, e.g., defined in a recursive manner. 
Further, the considered system is diagonally symmetric. Therefore,  for  
and . Consequently, all values stored with DASP are preserved in DASPC after applying the 
proposed condensation strategy and the corresponding error between DASP and DASPC is mainly in the 
magnitude of machine precision. 



 

The results of the computation time study are shown in Fig. 5.  10 samples were used for each  to 
estimate the mean computation time. For the approach based on MCS, a linear relation can be observed. The 
computations have been vectorisaed as well. The slope of this linear dependency solely depends on the 
computational cost of the structure function, as it has to be evaluated  times. The structure function considered 
in these case studies can be considered as cheap compared to more complicated models as outlined in the previous 
section.  

 
Fig. 5. Case Study 1: Computation time study for MCS, DASP, DASPC in terms of an increasing number of components . 

The DASP shows exponential growth of the computation time for an increasing number of components 
. For , the computation of an underapproximation of the CSSF exceeds the time 

required for estimating the true CSSF via MCS. In contrast, the computation time required by the DASPC increases 
over the range of  marginally. Table 1 shows the corresponding numerical values. Note that the 
computational cost of the DASP and DASPC do not increase with increasing computational cost of the structure 
function but depend on the according aggregation strategy and the resulting size of the three-dimensional matrix 
DASPC. 

Table 1. Computation time study  numerical values [sec]. 

/ 
Approach 

2 3 4 5 6 7 8 9 10 11 12 13 14 

MCS 3.02 4.13 5.09 5.89 6.63 7.49 8.22 9.06 9.83 10.62 11.75 12.09 12.86 

DASP 0.70 0.72 0.77 0.84 0.92 1.11 1.53 2.93 5.04 8.15 13.68 24.70 45.71 

DASPC 0.67 0.67 0.70 0.72 0.73 0.74 0.75 0.75 0.78 0.80 0.81 0.86 0.88 

 

3.2. Case Study 2: Increased CSSF Error Margin Due to Aggregation 

As it can be seen in Fig. 5., it is of utmost importance to condense the DASP in order to be applicable to systems 
with a large number of components due to high computational cost. However, the volume of the overall CSSF 
error margin between DASP and DASPC strongly depends on the properties of the underlying coherent structure 
function . An appropriate condensation strategy should be identified to balance the tradeoff between 
computational cost and a minimum CSSF error margin. The aggregation strategy proposed in Section 3.4. was 
applied for this case study.   

In this example, the structure function is unsymmetric due to the assignment of  as  for 
, compare Equation 10. Assign  and 

 for . Fig. 6. shows the obtained results by means of 
MCS and DASP, while Fig. 7. illustrates the error margins between the CSSFs computed via MCS and DASP as 
well as DASP and DASPC. The estimation of the true CSSF computed by means of MCS is given in Fig. 6. a). In 
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comparison, the DASP enables to compute an underestimation that is shown in Fig. 6. b) and the corresponding 
error margin in Fig. 7. a). Similar to the first case study, the volume of the error margin is significant. Fig. 7. b) 
shows the CSSF error margin between DASP and DASPC. This CSSF error margin is noticeable but small 
compared to the one shown in Fig. 7. a). 

 

Fig. 6. Case Study 2: (a) CSSF via MCS; (b) CSSF via DASP. 

Fig. 7. Case Study 2: (a) Error between CSSF (MCS) and CSSF (DASP); (b) Error between CSSF (DASP) and CSSF (DASPC). 

4. Conclusions and Outlook 

In the current work, the concept of DAS, originally introduced in (Winnewisser et al., 2023), is extended to 
consider systems that comprise components of multiple types. Further, a numerically efficient representation of 
the DAS was introduced and is referred to as DASP. Based on this representation the computations can be 
vectorised, leading to high computational efficiency when the number of comprised components . To 
overcome this limitation a basic aggregation strategy is proposed. The application of such generates the condensed 
DASP, referred to as DASPC, that results in tremendously reduced computation cost for any number of 
components  compared to MCS and DASP. The computation time study illustrated in the case studies proofs this 
advantageous behavior of the DASPC. In contrast to the MCS, the computational cost of the concept of DASP(C) 
in repeated model evaluations is independent of the computational cost of the structure function and does not 
require sampling. It only depends on the number of considered components and component types and the 



 

aggregation strategy to generate DASPC. A tradeoff has to be made between reducing computational cost and 
reducing errors between the generated CSSFs. 

An estimate of the true CSSF is obtained by means of MCS. The error between the true CSSF and its MCS 
estimate depends on the number of samples . The concept of DASP(C) evaluates an underapproximation of 
the CSSF based on explicit formulas. For the basic formulas proposed in this work a significant 
underapproximation can be observed. Nevertheless, the concept of DAS(PC) allows a more comprehensive 
analysis than other concepts of signatures if the underlying probability distributions characterise the random 
continuous performance states. 

The proposed formulas should be generalised to be also applicable to diagonally state negative systems. Further, 
more sophisticated aggregation strategies can be established to achieve an optimal tradeoff between computational 
cost and accuracy. In addition, combining the approach with further surrogate models, e.g., based on artificial 
intelligence facilitates the application to large scale systems, cf. (Shi et al., 2023). Similarly, the amalgamation 
with estimation procedures, such as proposed in (Behrensdorf et al., 2021), should enable this as well. One of the 
focal points of future developments will be the refinement of the formulas based on recursion for reducing the 
CSSF error margin between the true solution CSSF and the underapproximation obtained by means of the DAS 
concept. 
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