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Abstract 

With the advancement of machine learning technologies, the modeling of rebar corrosion in bridges - a critical aspect for 
prognosis of bridge conditions, maintenance planning and cost estimation - has become increasingly precise and reasonable. 
This paper introduces a novel methodology for assessing the condition of bridge rebars and estimating their Remaining Useful 
Life (RUL). Our approach synergizes a physics-inferred stochastic degradation model with neural networks to enhance the 
modeling of variabilities in the corrosion process. Initially, the rebar corrosion process is conceptualized using a two-stage 
Weibull-gamma degradation model, which accounts for the distinct stages of rebar corrosion based on physical scenarios. 
Subsequently, neural networks are employed to accurately capture and model the short-term fluctuations in corrosion levels, 
integrating these variations into the RUL estimation. The efficacy of our method is substantiated using lab-based experimental 
data, demonstrating its potential for more accurate and dynamic RUL predictions useful for maintaining bridge reliability. 
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1. Introduction 

Investigating the corrosion of rebars and accurately predicting their Remaining Useful Life (RUL) is of vital 
importance in the field of civil engineering and infrastructure maintenance. The integrity of concrete structures, 
notably bridges, heavily depends on the condition of the embedded rebars (Lane & Kleinhans, 2016). Corrosion 
in these rebars can lead to diminished structural strength, posing significant safety risks and potentially leading to 
catastrophic failures. Timely and precise RUL predictions enable engineers and maintenance teams to make 
informed decisions about repairs, replacements, and overall structural health management. This proactive approach 
not only ensures the safety and reliability of critical infrastructure but also contributes to optimized maintenance 
scheduling and cost-effectiveness (Zio, 2022). By extending the service life of structures and preventing 
unexpected failures, effective RUL predictions of rebar corrosion significantly enhance the resilience and 
sustainability of the built infrastructures. 

Several studies have focused on RUL prediction. Generally, the methodologies for RUL prediction fall into two 
categories: physics mechanism-based models (Nicolai et al., 2007; Zhang et al., 2015) and condition monitoring-
based data-driven approaches (Letot et al., 2015). Physics-based models for predicting the RUL focus on the basic 
principles and characteristics of degradation. One common approach is the use of stochastic processes to model 
the system degradation (Z. Li, et al., 2023). These models rely on random variables and parameters to represent 
the uncertain nature of degradation over time. In (Wen et al., 2018), a multi-phase Wiener process is established 
with random model parameters. Similar approaches have also been applied to model the degradation and RUL of 
batteries (Zhang et al., 2023) and bearings (Wang et al., 2023). Similarly, gamma process models also been applied 
to model monotonic degradation process such as turbine erosion (Chatenet et al., 2021), steel corrosion (Z. Li, J. 
Zhou, et al., 2023), and pipeline condition (Cholette et al., 2019). However, a notable challenge arises when 
modeling systems with multiple interrelated components. In such cases, a simple stochastic process may not suffice 
due to the complexity and correlations among components (Zeng et al., 2023). These correlations can stem from 
failure mechanisms (Fan et al., 2018; Yousefi et al., 2019), physical dependencies between components (Yousefi 
et al., 2020), or be represented through functional and parametric dependencies (Zheng et al., 2023). Recognizing 
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and accurately modeling these correlations is critical for a more comprehensive understanding and prediction of 
system degradation and RUL, especially in complex systems where the behavior of one component can 
significantly influence others. Using models that represent the system condition, the RUL can be calculated in 
several ways. This can be done through functions that describe the system states , deriving 
a random distribution (Hu & Chen, 2020), applying Karman filter (Le Son et al., 2013) or particle filter (Hachem 
et al., 2024), or conducting multiple simulations (Deng et al., 2020) or machine learning approaches (Yousefi et 
al., 2022) to predict a range of possible outcomes. 

Another approach to predicting RUL does not depend on detailed models of the system's condition. This is 
particularly useful when the underlying mechanisms are complex or not well-understood, or when creating a 
system model is too complicated. In such cases, a data-driven approach is adopted. This method relies on analyzing 
historical and real-time data to predict RUL, bypassing the need for an explicit physical model of the system 
condition. These technologies include probabilistic forecasting (Aizpurua et al., 2022), support vector machine 
(SVM) (Tao et al., 2018), convolutional neural networks (CNN) (Y. F. Li, et al., 2023), and LSTM (Zhang et al., 
2020). 

While neural networks are potent tools for predicting the corrosion process in rebars, relying solely on these 
data-driven methods for long-term corrosion forecasting, particularly in the context of infrastructure reliability, 
presents several challenges. A purely neural network-based model often lacks explanatory power due to its data-
driven nature and absence of underlying physical mechanisms. This can lead to issues in interpretation and 
understanding of the model predictions. Additionally, such models are susceptible to convergence issues as the 
degradation level continues to increase, potentially limiting their effectiveness for long-term predictions. To 
address these limitations, we developed a physics-inferred hybrid model. This approach combines the predictive 
power of neural networks with the explanatory and accuracy benefits of physics-based modeling, offering a more 
robust and reliable method for estimating the RUL of bridge rebars. 

This paper is structured into five main sections to present our study. Section 2 introduces the two-stage 
degradation process of rebar corrosion, detailing the laboratory experiment design and data collection methods. In 
Section 3, we develop a novel framework that integrates this two-stage model with neural networks, enhancing 
the precision of modeling the corrosion process. Section 4 focuses on applying this framework to dynamically 
estimate the RUL of rebars, utilizing the collected data to validate the model effectiveness. Finally, Section 5 
concludes the paper by summarizing our findings, discussing their implications for bridge maintenance and safety, 
and suggesting avenues for future research. 

2. Data description 

Rebar corrosion is subject to a variety of influencing factors, including environmental conditions like weather, 
the use of de-icing agents, the type and age of the concrete, the presence of cracks and others. To investigate the 
corrosion behavior of rebars, Rutgers University civil engineering laboratories conducted an extensive thirty-three-
month test and study focusing on three primary factors: the type of rebar, the concentration of chloride in the 
environment, and the size of cracks in the concrete. Adhering to ASTM standard G109-21 (ASTM, 2005), the 
experiment involved setting up concrete beam specimens with induced cracks of varying sizes and depths, as 
illustrated in Figure 1. Each concrete specimen (280 mm in length, 150 mm in height, and 115 mm in width) 
embedded three steel rebars. The top rebar, exposed to a sodium chloride (NaCl) solution, experienced corrosion 
and functioned as the anode, while the two bottom rebars remained uncorroded, acting as Cathodes. This setup 
created a 'macrocell circuit', wherein the extent of corrosion on the anodic rebar intensified the ion exchange, 
resulting in a greater electric potential difference between the corroded and non-corroded rebars. The level of steel 
rebar degradation was indirectly gauged through monthly measurements of this voltage difference (in millivolts), 
offering a quantitative metric and insight into the typical degradation process of rebar corrosion. 

The rebars used in our study are categorized into four distinct material types: Black Steel (BS), Epoxy Coated 
Steel (EC), Stainless Steel (SS), and MMFX. To control and vary the chloride concentration, we utilized sodium 
chloride (NaCl) solutions with concentrations set at 3% and 15%. As for the crack size in the concrete, we 
considered a range of dimensions, comprising two levels of crack width (0.011 and 0.035 inches) and two levels 
of crack depth (0.5 and 1 inches), in addition to a control group that featured no cracks. This diverse set of 
conditions was designed to comprehensively assess the impact of these variables on rebar corrosion. Figure 2 
shows the collected corrosion data for MMFX rebar within first 33 months. 



 

 
Fig. 1. Testing specimen in the rebar corrosion experiment. 

 
Fig. 2. MMFX corrosion paths under various conditions. 

The corrosion of rebars exhibits two distinct phases, as illustrated in Figure 2, reflecting the dual-stage nature 
of the corrosion mechanism. In the first phase, known as the corrosion initiation stage, chloride ions gradually 
penetrate the concrete and any protective layers on the rebar, such as coatings. During this time, the concentration 
of iron ions at the steel surface remains relatively low, resulting in a slower rate of corrosion. The duration of this 
initial stage varies, influenced by factors like the type of concrete, the depth at which the rebar is embedded, and 
the nature of the rebar coating. Eventually, enough ions reach the steel surface, enabling the corrosion reaction to 
stabilize and progress into the second phase: the corrosion propagation stage. Here, the rate of corrosion accelerates 
significantly. Due to this two-stage corrosion process, traditional one-stage degradation models are inadequate. 
Therefore, we employ a two-stage Weibull-gamma degradation model to more accurately characterize the rebar's 
degradation process. 

3. Neural network inferred two stage degradation model 

In Section 3, we embark on an in-depth exploration of the neural network-inferred two-stage degradation model. 
This innovative approach integrates the robustness of physics-based models with the adaptability and precision of 
neural networks. Firstly, in Section 3.1, we lay the foundation with a detailed description of our physics-based 
two-stage model, which captures the fundamental mechanisms of rebar corrosion in its initial and propagation 
stages. Building on this, Section 3.2 will introduce a novel application of neural networks, not as standalone 
predictive tools, but as a means to refine and correct the physics-based model. This synergy aims to leverage the 
strengths of both approaches: the reliability and explanatory power of physics-based modeling and the dynamic 
adaptability of neural networks to real-world data variances. This combined methodology promises a more 
accurate and interpretable model for predicting the RUL of bridge rebars. 

3.1. Physics-based two-stage model 

Informed by the mechanism of rebar corrosion, we have implemented a two-stage Weibull-gamma degradation 
model to gain insights into the rebar corrosion process. The initial stage of corrosion is characterized using a time-
to-event distribution, specifically the Weibull distribution, to model the duration of this initial phase. Essentially, 
this phase encompasses the period during which chloride ions penetrate the concrete and any protective layer on 



 

the rebar. We represent this time span as a random variable, , which adheres to the Weibull distribution., 
. Given that this initial corrosion stage is influenced by factors such as the size of the 

concrete crack size, denoted as, , and chloride concentration above the concrete, represented by , we have 
configured the Weibull scale parameter  to be a function of these two variables. To be more specific, the pdf of 
the  can be given as: 

 (1) 

Where  represents the benchmark level of the concrete crack size,  represents the benchmark level of the 
chloride concentration. Thus, the expected time span of the first corrosion stage, , can be obtained as: 

 (2) 

Upon the completion of the first stage of corrosion, the corrosion level attains a specific value, which we 
designate as the 'alarm threshold' and denote by . This threshold marks the transition from the initial corrosion 
stage to the second stage, known as the corrosion propagation stage. In this subsequent stage, the corrosion process 
accelerates, starting from the established level of  and continuing at a significantly higher rate. This progression 
persists until it reaches the failure threshold, denoted as . At this critical point, the functionality of the rebars is 
significantly compromised, necessitating immediate replacement to ensure structural integrity. Thus, the expected 
corrosion level during the first stage can be given as: 

 (3) 

During the second corrosion stage, known as the corrosion propagation stage, the corrosion level intensifies, 
ranging between and H. At this juncture, a significant number of iron ions have reached the steel's surface and 
actively engage in the corrosion reaction. Consequently, the corrosion rate escalates, influenced significantly by 
the environmental chloride concentration. To accurately model this stage of degradation, employing a linear 
gamma process is an appropriate choice. We adopted a linear gamma process to characterize the second corrosion 
process, the monthly increment of corrosion level can be shows as: 

 (4) 

Where  denoted the baseline of the chloride concentration level;  is greater than the first month of the second 
corrosion stage. . The expected corrosion level during the second corrosion stage can be given as: 

 (5) 

Utilizing the Weibull-gamma two-stage degradation model, we are equipped to effectively characterize the rebar 
corrosion process from both a physics-based mechanistic perspective and a stochastic process standpoint. 

3.2. Neural network enhancement for physics-based model 

While the physics-based two-stage model offers valuable insights into the rebar corrosion process, it 
predominantly views the phenomenon through the lens of expected corrosion values. Once environmental 
conditions and parameters are defined, all predictions can be derived using Equations (3) and (5). However, this 
model falls short in capturing the real-time fluctuations and recent changes in corrosion levels that occur in 
practical scenarios. Additionally, the effectiveness of physics-based models can be constrained by our current 
understanding of the underlying mechanisms. To address these limitations, we propose the integration of a neural 
network with the two-stage model. This enhancement aims to provide a more accurate and dynamic prediction of 
the rebar corrosion level, leveraging the neural network's ability to adapt to varying conditions and refine the 
model's output based on observed data. 

There are generally four steps to combine the neural networks with the physics-based two stage model for better 
corrosion level prediction. 

 Step 1: parameter estimation and expected corrosion calculation. Initially, we estimate the parameters of 
the two-stage model using observed data. Based on these parameters, we calculate the expected corrosion 
level for each stage, providing a physics-grounded baseline for our further predictions. 

 Step 2: error calculation. We calculate the discrepancy between the expected and the actual observed 
corrosion levels. This step is crucial as it highlights the limitations of the physics-based model in real-



 

time scenarios, thereby identifying areas where neural network intervention is necessary. 
 Step 3: neural network training. Here, we train a neural network using historical prediction error data, 

alongside environmental conditions, to predict the current month's error. The neural network takes as 
input an array comprising environmental conditions, the current month, and errors from the previous three 
months ( ), with the aim to predict the current error ( ). This approach enables the model 
to adaptively learn from past inaccuracies and refine its predictions dynamically. 

 Step 4: precision enhancement. Finally, we add the error predicted by the neural network back to the 
expected corrosion value derived from the two-stage model. This step is a critical convergence of physics-
based modelling and machine learning, resulting in a nuanced and precise prediction of the corrosion 
level for the current month.  

By doing so, we not only retain the foundational strength of the physics-based approach but also improve it with 
the adaptive, data-driven capabilities of neural networks. Utilizing the comprehensive four-step process outlined 
above, we are now equipped to accurately predict the corrosion level of rebars under specific conditions. This 
methodology forms a solid foundation for assessing the reliability of rebars and anticipating their RUL. 

4. Dynamic estimation for RUL 

To calculate the RUL of rebars, we utilize the predicted corrosion levels derived from the methodology 
previously discussed. The first step involves determining the corrosion rate over a specified time window, which 
we denote as CR. This rate is calculated using Equation (6), outlined below: 

 (6) 

Where  represents the corrosion rate for month .  is the predicted corrosion level at month . The variable 
 represents the time span of the observation window. It's important to note that calculating the  over a short 

window, such as one month, can lead to significant fluctuations. These short-term variations may not provide a 
reliable basis for long-term RUL estimation, as they might not accurately reflect the overall trend of the corrosion 
process.  

When the predicted corrosion is in the first stage of corrosion, the calculation of RUL involves summing two 
time frames. The first is the anticipated time until the rebar reaches the alarm threshold (denoting the end of the 
first stage), and the second is the expected duration of the second corrosion stage. Since the corrosion is at first 
stage, we assume the  at the second stage can be fully estimated by the linear gamma process. Therefore, during 
the initial corrosion phase, the RUL for month  can be computed as Equation (7) presented below: 

 (7) 

Once the predicted corrosion level progresses into the second stage, it becomes necessary to calculate the  
for this stage using Equation (6). At this juncture, the RUL of the rebar can be expressed as follows: 

 (8) 

By employing Equation (7) for the first stage and Equation (8) for the second stage of corrosion, we are able to 
accurately anticipate the RUL of rebars. This approach harmonizes the physics-based two-stage model with the 
predictive insights of neural networks, offering a comprehensive and reliable scheme for RUL estimation. 

5. Numerical results 

Our methodology for estimating the RUL is exemplified through a case study focusing on EC rebar, under 
specific conditions: a crack width of 0.011 inches, a crack depth of 0.5 inches, and an environment with a 15% 
sodium chloride solution concentration. The alarm threshold,  for EC has been observed to be 110 mV. To 
construct the two-stage model effectively, we first employed a maximum likelihood estimation approach for 
determining the Weibull and gamma parameters. The estimated parameters, which form the foundation of our 
model, are detailed in Table 1. 



 

Table 1. Weibull-gamma two stage model parameters for EC rebar. 

Stage 1 parameters Stage 2 parameters 

       

12.203 18.401 -0.030 -0.045 3.163 0.191 -- 

The parameter  cannot be estimated based on the corrosion data, either due to its relatively small effect or the 
variability in the data, so it is omitted. Based on the parameters in Table 1, the expected corrosion level can be 
calculated and plotted as solid red line in Figure 3, the prediction mean square of error (MSE) for EC under the 
given condition is 174.93. 

To refine the predictions of the Weibull-gamma two-stage model, we employed a simple feedforward neural 
network with two hidden layers. The first and second hidden layers consist of 128 and 64 neurons, respectively. 
After undergoing training over 700 epochs, the neural network achieved convergence to a stable state. The 
implementation of this neural network for bias correction notably enhanced the prediction accuracy of our model. 
Specifically, the MSE for the neural network-enhanced two-stage model was reduced to 51.71, which represents 
an improvement of 70.44%. The enhanced predictive performance of the neural-network-augmented two-stage 
model is also visually demonstrated as green dashed line in Figure 3: 

 
Fig. 3. Expected corrosion level prediction for EC rebar under condition [0.011, 0.5, 0.15]. 

To dynamically predict the RUL across varying months, we set the failure threshold, , and 
selected a window span, l = 4 months for calculating the CR. The computation of CR relies on the corrosion level 
from the preceding month, prompting us to initiate the calculation of both CR and RUL from the second month 
and continue through to the 45th month. The RUL at each of these intervals is determined using Equations (7) and 
(8). To illustrate these dynamic predictions, the results are graphically presented in Figures 4 and 5, offering a 
visual depiction of the RUL trends over the specified time frame. 

 
Fig. 4. Corrosion rate prediction. 



 

 
Fig. 5. Prediction for RUL considering two-stage scenario. 

Figure 4 illustrates the predicted changes in the corrosion rate over a 45-month period. A noticeable increase in 
the rate is observed around the 15th month, aligning with the physical mechanism where the corrosion transitions 
into its second, more aggressive stage. Following this shift, the corrosion rate stabilizes, maintaining a relatively 
high level throughout the remainder of the period. 

Figure 5 presents three distinct methods of calculating RUL. The red dashed line represents the RUL prediction 
based solely on the current predicted corrosion rate, which is a common approach in traditional calculations. The 
green dashed line illustrates the RUL estimation derived from the Weibull-gamma two-stage model prediction. In 
contrast, the blue solid line depicts the RUL prediction using our proposed approach, which incorporates the two-
stage mechanism in both the prediction modeling and RUL estimation. 

The comparison in Figure 5 reveals that when the two-stage mechanism is only considered in the modeling 
phase but not in RUL estimation, the result exhibits considerable variability initially, eventually stabilizing reduces 
over time. Conversely, relying entirely on the two-stage corrosion model for RUL estimation yields a linear 
prediction, failing to capture the actual variability in corrosion rates. However, by employing our proposed method, 
the RUL prediction achieves an optimal balance between variability and accuracy. This approach not only provides 
a more robust insight into the safety assessment of bridge rebars but also enhances overall decision-making in 
maintenance and management strategies. 

6. Conclusions 

This study has presented a novel approach for predicting the RUL of bridge rebars, integrating a physics-based 
two-stage degradation model with neural networks. Our methodology begins with a detailed examination of the 
rebar corrosion process, capturing its nuances through a Weibull-gamma two-stage model. This model effectively 
delineates the initial and propagation stages of corrosion, grounded in physical mechanisms and stochastic 
processes. To address the limitations inherent in purely physics-based models, particularly their inability to account 
for real-time fluctuations, we have introduced a neural network enhancement. This enhancement significantly 
improves the accuracy of the model by incorporating dynamic environmental conditions and past prediction errors 
into the RUL estimation process. Our results, illustrated in Figures 4 and 5, demonstrate the effectiveness of our 
approach. The neural network-augmented two-stage model not only aligns with the physical realities of rebar 
corrosion but also offers a more nuanced and adaptable prediction mechanism. By balancing the foundational 
strengths of physics-based modeling, with the adaptive learning capabilities of neural networks, our method 
provides a robust tool for assessing rebar reliability and planning maintenance strategies. 

There are also several aspects for further refinement and research. One direction is the exploration of more 
sophisticated neural network models. Advanced architectures and learning algorithms could yield even higher 
prediction accuracy, adapting more effectively to complex and variable corrosion processes. Additionally, 
enhancing the two-stage degradation model itself presents significant potential. Incorporating random effects into 
the model would bring it closer to real-world conditions. 
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