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Abstract 

In this paper we propose a dynamic model of Common Cause Failures (CCF) that allows to generate common cause events in 
time. The proposed model is a generalization of Binomial Failure Rate Model (Atwood model) that can generate staggered 
failures of multiple components due to a common cause. We implement the model using statechart formalism, a similar 
implementation can be adopted in other modeling languages like Petri Nets or Hybrid Stochastic Automata. The presented 
model was integrated in a Dynamic PRA study. 
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1. Introduction 

Common Cause Failures (CCF) are an important part of the Probabilistic Risk Assessment (PRA) of nuclear 
power plant. They often represent important contributors to the overall risk appearing in the first ranks of minimal 
cut sets.  

A CCF event consists of component failures that meet four criteria: 
(1) two or more individual components fail, are degraded (including failures during demand or in-service testing), 
or have deficiencies that would result in component failures if a demand signal had been received, (2) components 
fail within a selected period of time such that success of the probabilistic risk assessment (PRA) mission would be 
uncertain, (3) components fail because of a single shared cause and coupling mechanism, and (4) components fail 
within the established component boundary.  

When a stochastic event (e.g., a failure) is modeled in a PRA, the following steps are performed (IAEA, 2010): 
1) An assumption about the timing of the event is made based on the engineering knowledge about system 

behavior. Often the choice is made to consider that the failure occurs  at the beginning of the scenario. 
2) The scenario consequence is evaluated based on the timing of the event a support study is performed. 
3) The PRA model is built based on the results of the support study. For the considered scenario, the failure 

on demand as well as the failure to run are both considered to occur at the beginning of the scenario, and, 
therefore, modeled within the same sequence. This approach is often backed up by the argument that the 
failure of the components at the beginning of the scenario represents a bounding case that englobes the 
consequences of all the scenarios where failures occur in later times. 

In general practice, the CCF modeling follows the same logic, as the unavailability of multiple redundant 
components at the beginning of the scenario is considered as the bounding scenario. Nevertheless, CCF of real 
systems do not necessarily occur simultaneously. They may occur at the same time, for example because of a 
hazard and spatial proximity, but they may also appear in a staggered way. They are defined as failures of similar 
equipment occurring within a limited timespan. Therefore, some situations may require a refined approach to 
represent stochastic failures in time.  

In these cases, dynamic methods for probabilistic safety assessment can be used for explicitly taking into 
account the time of occurrence of failure events into the risk quantification framework (Aldemir, 2013). 
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In dynamic PRA the time distribution of independent failures is, in general, modeled using exponential 
distribution. Nevertheless, the modeling of time distribution of failures due to CCF event is much less of a common 
practice. 

Up to date, a limited number of studies, such as (Deleuze et al., 2016) and (Donat.et al., 2015) discussed the 
topic. (Donat.et al., 2015) proposed a modeling approach for CCF in a dynamic model that generate 
simultaneous failures of multiple components in time. (Deleuze et al., 2016) presented  the possibility to model 
a staggered (and therefore more realistic) appearance of CCF but without a connection to a dynamic PRA. 
In this paper, we present a modeling framework to represent CCF in dynamic models by using the Atwood 

model. This model was used in an industrial study (Rychkov et al., 2023) using statechart formalism. The proposed 
framework be adopted to different modeling approaches, if needed.  

The paper is organized as follows. In Section 2 we recall the CCF theory model with a particular focus on 
Atwood model. In Section 3, we explain the modeling approach to model CCF in a dynamic approach via an 
example. For this we use the statechart formalism (Rychkov et al., 2023). In Section 4, we present the simulation 
results. Finally, in Section 5, we draw conclusions perspectives. 

2. CCF Theory Model 

Different CCF theory model exists such as the Alpha-factor (Mosleh et al., 1988), Multiple Greek Letters 
(Mosleh et al., 1988), Atwood (Atwood, 1986), that are currently used in standard PRA models. Nevertheless, 

study. One implementation we find 
in the literature concerns the use of Alpha factor model for the BDMP 4.1 knowledge base of KB3 (Donat et al., 
2015). This approach indeed allows to integrate CCF events in a dynamic model, but it produces only simultaneous 
failures of multiple components due to a CCF event. 

As mentioned in the introduction, one of the main challenges of modeling CCF in a dynamic model is that, as 
it happens in the reality, after the occurrence of the CCF event, failures may appear not simultaneously but in a 
staggered way.  

In order to model this, we use a shock model such as the Atwood model. This model : 
- have not the concept of CCF group, which minimizes its implementation into a dynamic model, 
- easily allows the implementation of the occurrence of staggered failures following a CCF event (Deleuze 

et al., 2016). 

2.1. A generalization of the Binomial Failure Rate model: the Atwood model 

The Atwood model (Atwood, 1986) is a generalization of the Binomial Failure Rate (BFR) model (Atwood, 
1986). As described in (Nguyen, 2019) concerning the Atwood model :  

affect the survival status of all the components in a system. Individual components failures are described using 

first version of BFR model are 
outside common cause shocks. When an outside shock occurs, it is assumed that each component has the same 

lethal shock modeled by a Poisson 
 

The Atwood model is a shock CCF model that supposes the possibility of the occurrence of (i) a lethal shock 
event (that will impact all the components) and (ii) a non-lethal shock event (that will impact partial number of 
components). The model makes use of 4 parameters:  

  : occurrence rate of lethal shocks ; 
  : occurrence rate of non-lethal shocks ; 
  : conditional probability of a component failure given the occurrence of non-lethal shock ; 
 ind : independent failure rate. 

In summary, during a given sequence :  
 The component can fail independently with a failure rate ind,  
 A lethal shock can occur with an occurrence rate , after which all components fail in a staggered way. 
 A non-lethal shock can occur with an occurrence rate , after which some components fail in a staggered 

way. 
From an implementation point of view, in order to guarantee the staggered appearance of the failures, this 

translates in :  
 The independent failure is sampled from an exponential distribution of parameter ind, 



 

 The occurrence of the lethal shock is sampled from an exponential distribution of parameter . If this 
happens, the failure of the component is resampled from a truncated exponential distribution with a new 
parameter that is defined such that the probability to fail within the mission time is equal 1,  

 The occurrence of the non-lethal shock is sampled from an exponential distribution of parameter . If this 
happens, the failure time of the component is resampled from an exponential distribution with a new 
parameter that is defined such that the probability to fail within the mission time is equal . 

3. The implementation in a dynamic study : an example  

In order to illustrate the implementation of the modeling framework we use the example of 4 Emergency Diesel 
Generators (EDGs) working on 4 different trains using statechart1 formalism (Harel, 1987). Statecharts are used 
by numerous methods that target diverse application domains such as robotics, internet agents, simulation, health 
and safety (Spanoudakis, 2021). 

CCF model is implemented in a dynamic model (Rychkov et al., 203)  with itemis CREATE tool (itemis, 2024). 

3.1. CCF Simulation Model 

The model consists of two parts :  
 CCF event generator, in charge of sampling and tracking the occurrence of the lethal or non-lethal shock. 
 EDGs model, in charge of modeling the behavior of the EDGs. A model of the EDG is implemented and 

the replicated 4 times, one representing each EDG. 

3.1.1. CCF event generator 

As mentioned earlier, the task of the CCF event generator is to sample and track the occurrence of lethal and 
non-lethal shock events.  

Fig. 1 represents the statechart model of the CCF generator. The sampling of the time of occurrence of the lethal 
and non-lethal shock, tf_Lethal and tf_NonLethal respectively, is performed through a tf C++ function with 
parameter omega and mu respectively. The tf function implement the sampling from an exponential distribution. 
After the sampling, the Idle state is reached. If the non-lethal shock occurs first, th
tf_NonLethal NonLethal_failed. This will correspond to 

tf_Lethal 
is taken the state Lethal_failed is entered
presented model we assume that it is not possible to have multiple shocks within the same sequence. 

 

                                                           
1 A state machine is a behavior model. It consists of a finite number of states and is therefore also called finite-state machine 

(FSM). Based on the current state and a given input the machine performs state transitions and produces outputs. (itemis, 2024) 

Fig. 1. Statechart model of the CCF event generator. 



 

3.1.2. EDG model 

The EDG model is replicated 4 times to represent each EDG. Fig. 2 shows the example of EDG1. 

 
At the beginning of the simulation, failure time tf_d1 of EDG1is sampled from an exponential distribution with 

parameter lambda (= ind) using the C++ function tf :  
 tf1 

to the state Failed state.  
 If the lethal shock occurs first (represented by the CCF_Lethal event triggered by the CCF event 

generator) then tf_d1 is resampled by the function tf_Lethal. This function resampled tf_d1 from a 
truncated exponential distribution with a parameter lambda_eff_Lethal that depends on the remaining 
time until mission time. This lambda_eff_Lethal  is defined such that the failure conditional probability 
within timespan is 1.  

 If the non-lethal shock occurs first (represented by the CCF_NonLethal event triggered by the CCF event 
generator) then tf_d1 is resampled by the function tf_NonLethal. This function resampled tf_d1 from an 
exponential distribution with a parameter lambda_eff_NonLethal that depends on the remaining time until 
mission time. This is defined such that the failure conditional probability within timespan is .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Statechart model of the EDG component (example of EDG1). 



 

3.1.3. The overall model 

The overall model consists of 4 EDGs and 1 CCF generator as shown in Fig. 3. 
 

 
The original reliability data from the PRA model are shown in Table 1. 

Table 1. Reliability Data (INL, 2020). 

1 9,87E-01 

2 7,06E-03 

3 4,55E-03 

4 1,54E-03 

 1,18E-03 

4. Verification 

To verify the model, we decide to start with the alpha model parameters used in the PRA model. Then, convert 

linear system. The corresponding Atwood parameters, resulting from the conversion, are shown in Table 2. 

Table 2. Alpha model to Atwood model conversion.  

 7,06E-03   2,04E-06 

 4,55E-03   8,71E-05 

 1,54E-03   4,92E-01 

Fig. 3. The overall Model 



 

tot 1,18E-03  
ind 1,14E-03 

 
Next, the model is simulated 1E7 times via a MonteCarlo simulations over 24 hours. Fig.4-7 illustrate examples 

of possible outcomes of simulated sequences represented as sequence diagrams. 

 
Fig. 6 An independent failure of 1 component and common cause failure of 3 components. An EDG1 fails due to independent cause at tf_d1, 
then the CCF generator generates a lethal shock at time t_L, that provokes resampling of the failure times of EDGs 2,3,4 using exponential 

distribution truncated at mission time. Then each EDG fails independently at different time tf_d2,3,4.  

Fig. 4 A common cause failure of the order of 4 due to a lethal shock. The CCF generator generates a lethal shock at time t_L, that provokes 
resampling of the failure times of each EDG using exponential distribution truncated at the mission time Then, each EDG fails independently 

at different time tf_d1,2,3,4. 

Fig. 5 A common cause failure of 2 components. The CCF generator generates a non-lethal shock at time t_nL, that provokes resampling of 
the failure times of each EDG using exponential distribution with the effective lambda calculated in such a way that the probability of failure 

within the mission time is equal to . Then, each EDG fails independently at different time tf_d1,2,3,4. Failures of EDG 1 and 3 fall inside the 
mission time, thus only these failures are accounted for. 



 

 
Results are then analyzed to: 

 Estimate the Atwood parameters (to verify our program model) 
 Estimate the alpha parameters (to verify our Atwood  Alpha conversion).  

The estimation of the alpha model and Atwood model parameters are here shown: 
 

                                                                                        (1) 
 

                                                                                        (2) 
 

 
                                                                                       (3) 

 
These BFR parameters imply the following estimation of Alpha model parameters. 
 

                                                               (4) 
 

                                                             (5) 
 

                                                              (6) 
 

Eventually, as a further confirmation, we also estimated the parameter : 
 

            (7) 
 

Table 3 presents an overview of calculations and results. We find a good agreement between original and 
estimated alpha and Atwood parameters. 

Table 3. Overview of parameters estimation.  
Estimated Input 

 6,97E-03 7,06E-03 
 4,40E-03 4,55E-03 
 1,52E-03 1,54E-03 

tot 1,18E-03 1,14E-03 
   

Fig. 7 An independent failure of 1 component and common cause failure of 2 components. EDG1 fails due to independent cause at tf_d1, then 
the CCF component generates a non-lethal shock at time t_nL, that provokes resampling of the failure times of EDGs 2,3,4 using exponential 
distribution with the effective lambda calculated in such a way that the probability of failure within the mission time is equal to . Then each 

EDG fails independently at different time tf_d2,3,4, but failure of only EDG3 and 4 falls inside the mission time thus only accounted for. 



 

 2,14E-06 2,04E-06 
 8,60E-05 8,71E-05 
 0,51 0,49 

5. Conclusions and Perspectives 

This paper presents a first approach to model dynamically CCF using a shock model. The model has been 
applied to a real case (Rychkov et al., 2023). Nevertheless, some open questions concerning how to model CCF in 
time remain and further research should be performed in order to : 

 Validate the Atwood model for the case of CCF group of different sizes; 
 Validate the proposed staggered mechanism for longer mission times (which may be affected by the lack 

of operating data); 
 Investigate how to integrate CCF on demand; 
 Explore how to model CCF in case of repair; 
 Compare parametric model (Alpha) vs shock models (Atwood) for dynamic studies. 
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