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Abstract 

This article presents a model for calculating the Economic Service Life of turbines and generators in power plants. It 
considers various factors such as Inspection Cost, Capital Cost, Risk Cost and Opportunity Cost to estimate the life-cycle 
cost. Based on historical data and experts' opinions, a probability distribution with different parameters is provided for each 
turbine and generator. With the new design of turbines and generators producing more electricity, they are likely to be 
replaced sooner based on economic considerations rather than just the manufacturer's lifespan. A cost-optimization model is 
developed for power plant networks to find the optimal Economic Service Life while considering constraints like limited 
replacements each year and replacement of both turbine and generator at the same time. The model is effectively tackled 
using genetic algorithms. In cases where solutions do not meet constraints, they are deliberately penalized. The results 
provide the minimum life-cycle cost for all units and determine the optimal lifetimes for each turbine-generator, maximizing 
assets' value, optimizing resources, and ensuring reliability in the system.  
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1. Introduction 

Expected Service Time (EST) and Economic Service Life (ESL) represent distinct concepts concerning an 
asset's lifespan. EST denotes the anticipated duration for which an asset operates effectively and efficiently under 
normal conditions, considering factors like design, manufacturing quality, and operating environment. Conversely, 
ESL signifies the duration during which an asset remains economically viable, generating adequate revenue to 
cover operating and maintenance costs, and yielding a reasonable return on investment. Economic factors such as 
replacement costs, financing, and market dynamics also influence ESL. Analyzing the Life Cycle Cost (LCC) of 
an asset facilitates ESL estimation. LCC encompasses all expenses associated with owning, operating, and 
decommissioning a hydroelectric power plant throughout its lifespan. This comprehensive analysis incorporates 
initial capital outlays, operational and maintenance expenditures, as well as risk costs. LCC assessment plays a 
pivotal role in asset management, aiding in procurement decisions, ongoing management support, performance 
evaluation, and future investment planning (Sinisuka and Nugraha, 2013). 

Hydroelectric power plants play a pivotal role in sustainable energy generation, providing clean and renewable 
electricity. However, ensuring their optimal performance and longevity poses significant challenges for asset 
managers and operators. A key part of good management is knowing when to replace important components like 
turbines and generators. This decision directly impacts operational efficiency, maintenance costs, and overall 
profitability. To address these challenges, this study proposes a novel approach leveraging comprehensive LCC 
analysis and optimization techniques to estimate the ESL of hydro-power plant assets. 

The literature on asset management and life-cycle cost analysis provides valuable insights into optimizing the 
operational lifespan of various energy systems. El-Akruti et al. (2013) emphasizes the critical role of life-cycle 
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cost analysis in engineering asset management, highlighting its importance in decision-making processes regarding 
maintenance, repair, and replacement strategies. Wang et al. (2018) offer a comprehensive review of evaluation, 
optimization, and synthesis methodologies for energy systems, underscoring the significance of such approaches 
in enhancing the efficiency and sustainability of thermal power plants. In the context of power generation, Sinisuka 
and Nugraha (2013) conducted a life-cycle cost analysis focusing on operational aspects, shedding light on the 
economic factors influencing decision-making in power generation facilities. Liu et al. (2023) extended this 
analysis to wind power systems, emphasizing the importance of economic modeling in assessing the life-cycle 
cost and economic viability of renewable energy sources. Moreover, Amba and Dalimi (2023) present an economic 
analysis of hybrid power plants, demonstrating the applicability of comprehensive cost assessments in optimizing 
energy generation from multiple sources. Amoussou et al. (2023) explores the technical and economic feasibility 
of replacing traditional thermal power plants with hybrid PV-PHSS systems, highlighting the potential for cost 
savings and environmental benefits.  

Within the realm of hydroelectric power, Kumar, and Saini (2022) provide a detailed review of operation and 
maintenance practices, emphasizing the importance of proactive maintenance strategies in maximizing plant 
efficiency and longevity. Keck et al. (1995) discuss the significance of runner replacement in hydro-power plants, 
underlining the potential for enhancing energy generation through timely component upgrades. Incorporating 
optimization techniques into asset management, Koch et al. (2007) demonstrate the effectiveness of evolutionary 
algorithms in optimizing combined cycle power plants, illustrating the potential for improving operational 
efficiency and cost-effectiveness. Balanta et al. (2023) focus on planning and optimizing the replacement strategies 
of power transformers, highlighting the importance of strategic decision-making in asset management. 

Overall, the literature underscores the critical role of comprehensive life-cycle cost analysis and optimization 
techniques in enhancing decision-making processes, improving operational efficiency, and maximizing the 
economic viability of energy systems. However, there remains a gap in the literature concerning the optimization 
of replacement timing for turbines and generators in hydro-power plants, particularly in addressing the unique 
challenges posed by simultaneous replacement requirements and limited capacity constraints. This study aims to 
fill this gap by proposing a novel approach utilizing genetic algorithms to optimize the replacement time of group 
turbines and generators in hydro-power plants by estimating ESL based on a comprehensive LCC model. The LCC 
model incorporates various cost factors including operating and maintenance expenses, depreciated cost, and risk 
costs, alongside the consideration of postponed investment expenses. These costs are crucial determinants 
influenced by factors such as the age of the plant, technological advancements, and inspection frequency. Hydro-

maintaining and replacing generating units due to constraints like limited replacement capacity per year and 
simultaneous replacement requirements.  

The rest of the article is structured as follows. Section 2 illustrates the method for computing the ESL for each 
asset, Section 3 shows how the model is integrated with a genetic algorithm. Section 4 provides a numerical 
example and presents the results. Finally, the conclusion is summarized in Section 5. 

2. Financial model for LCC 

Annualization is the process of converting a cost or benefit from a one-time occurrence into an equivalent cost 
or benefit per year. By annualizing cost, one can account for the time value of money, ensuring that the costs of a 
project can be compared consistently over its entire life cycle. Additionally, annualizing costs is also useful for 
costs that are dependent on probability, such as power outages due to sudden failures. These costs are probabilistic 
and can vary each year, with different probabilities of occurrence and different costs associated with each year. 
For example, a component with a high failure rate in its last five years of life will have a higher yearly risk cost 
compared to its first five years. 

As previously stated, the costs included in the LCC analysis are maintenance costs, risk costs, capital costs, and 
investment delay costs. These costs and parameters, detailed in Table 1, represent gross estimations and are not 
necessarily representative of Hydro-  

 
 



 

Table 1. Input data. 

  
  

  

  

  
  

  
  

  

  
 

2.1. Maintenance & Inspection Costs (MIC) 

MIC in hydro power plants refer to the expenses incurred in keeping the plant running efficiently and safely 
over its lifetime. This includes regular inspections, repair, and replacement of equipment, as well as labor and 
materials costs. Every six years, in HQ, turbines and generators are inspected, and if any partial failures are found, 
they undergo repairs. This cost is treated as a steady, predictable expense and is spread out over the course of the 
year. This cost may also incorporate a probabilistic component if there is a probability of discovering partial failure 
at each inspection, but this is not considered in the present study. Note that the operational costs of a hydro power 
plant are relatively low as they generate electricity from the kinetic energy of falling water and have few fuels 
cost. 

For example, using the data in Table 1, the MIC is calculated as $60,000, which, after considering the inflation 
rate, becomes $66244. This cost is then divided into six equal payments (Taking inflation into account), resulting 
in $11826.4 per year. The MIC for the asset's life cycle is determined by adding up all the AMIC payments over 
the years. 

2.2. Risk Costs (RC) 

RC is the cost associated with the unexpected breakdown of an asset, such as turbines or generators. It can be 
caused by various factors, including poor maintenance, design flaws, and wear and tear. The calculation of RC 
cost involves estimating the cost of replacement and the cost of any lost production or sales that result from the 
sudden failure. In addition, the likelihood of failure plays a crucial role in determining the RC. To calculate RC, 
we must first calculate the Annualized Risk Cost (ARC). The failure rate over the lifespan of an asset is used to 
calculate the ARC. The probability density function of an asset enables the calculation of the reliability function, 
cumulative failure and failure rate curve as shown in Equations (1) through (3), respectively (O'Connor, 2012.). 

 (1)

 (2)

 (3)

 
where R(t) is reliability from time 0 until time t, r(t) is the failure rate at time t, f (t) stand for probability density 

function and F(t) is the cumulative failure until time t. Figure 1 displays the cumulative failure, reliability, and 
failure rate of an asset throughout its lifespan, using the Weibull distribution with a shape parameter of 3.5 and a 
scale parameter of 30 years. 



 

 
 

 
By having the probability density function, the probability of failure at year t can be calculated as follows:  

 (4) 

Consequently, ARC can be calculated by multiplying the cost of unplanned replacement and lost production 
by the probability of failure for each year. The RC for the life cycle of the asset then calculated by summing up all 
its ARC over the years.  

 (5) 

 (6) 

Given the same probability distribution and the data in Table 1, the failure rate for the year 15 is 0.020 and 

the lifespan of 30 years is equal to 63238 k$. Figure 2 presents the cumulative failure and ARC for the duration of 
30 years. 

 

The cumulative failure and the annualized risk cost. 

2.3. Capital Cost (CC) 

CC of an asset includes all expenses incurred in bringing an asset into use, including its purchase price, 
transportation, installation, and any other costs necessary to make it operational. On the other hand, the Depreciated 
Cost of an asset is the expense incurred for the gradual decrease in value of an asset over its useful life. This cost 
is typically calculated using a depreciation method such as the straight-line method, declining balance method, or 



 

sum-of-the-years'-digits method (Harrison Jr, 2014.). The purpose of calculating depreciation is to allocate the cost 
of the asset over the years that it is being used, rather than incurring the entire cost in the year the asset is purchased. 

The CC for year T can be calculated based on depreciation rate using Equations 7. 

 (4) 

where, Salvage Value is the estimated value of the asset at the end of its useful life, which is typically zero and 
Expected Service Time (EST) is the number of years the asset is expected to be used which is provided by the 
manufacturer. For example, based on the information in Table 1, an asset with initial capital cost of 60,000 k$, 
depreciation rate of 0.1 and with ETS of 40 years, the CC after 10 years will be equal to 20,400 k$. 

2.4. Opportunity Cost (OC) 

Opportunity cost is the cost of not investing in a particular project or asset and is a measure of the lost potential 
benefits of an investment. In HQ, the overall improvement in turbine performance results in new designs being 
more efficient and powerful compared to older ones. This enhancement occurs gradually over the span of decades. 
The cost of not replacing the outdated generating unit with the new and improved one is calculated as the difference 
in the anticipated revenue or gain that the new unit could bring compared to the old one.  

Consider an aging 40-year-old generating unit producing 50,000 MWh annually, generating $2.5 million in 
revenue at $50/MWh. The upgrade version is available after 40 years of set up of the last one, boosts output by 
2%, reaching 51,000 MWh annually. This generates $2.55 million revenue annually. It means that failing to take 
advantage of this opportunity would result in a loss of $1 million after 20 years. This cost would prompt the 
replacement of the asset sooner to take advantage of the opportunity and convert the cost into profits. 

2.5. Total cost and ESL 

In this section, we create a visual representation of the total cost of the asset over a 30-year span, utilizing the 
information presented earlier in the examples and in Table 1. The costs taken into account include inspection costs, 
risk costs, capital costs, opportunity costs, and the total cost, all adjusted for a 2% inflation rate. In figure 3, the X-
axis represents the time in years, and the Y-axis represents the cost in dollars. The graph provides a clear picture 
of the costs over time, allowing for easy comparison and analysis of cost trends. The point in time when the total 
cost reaches its minimum is referred to as the economic service life of the asset. In the given example, the minimum 
total cost occurs at year 13 and is equal to $4.01 million. This information is important in making decisions about 
when to replace the equipment, as operating it beyond its economic service life may lead to higher costs. 

 
Fig. 3. A visual representation of all costs over 30 years. 



 

3. Model description and Genetic Algorithm 

Each power plant in HQ comprises several generating units, the two primary and expensive components of which 
are the turbine and generator, each possessing its own set of characteristics such as probability distribution and 
initial capital cost. By utilizing this methodology, the estimated economic Service Time for each group of turbines 
and generators can be calculated. However, the implementation of the plan may be affected by restrictions within 
the hydro power plant network, leading to the need to adjust the replacement schedule for the generator units from 
the original estimate. With limited replacement windows available per year and the simultaneous replacement 
requirement of turbines and generators, and external constraints may cause variation in the replacement date. As 
such, an optimization model is required, with the ESL for each turbine and generator as the variables and the 
objective being to minimize the total cost for the entire system. The model is then developed and solved through 
the use of Genetic Algorithms. 

3.1. Mathematical Model 

In optimizing the replacement schedules for turbines and generators within our system, we aim to minimize the 
total costs while adhering to various operational constraints. Equations 8 through 13 present the objective function 
and constraints governing the optimization model. 

 (8) 

 
Subject to: 

 (9) 

 (10) 

 (11) 

   (12) 
   (13)

The objective function (Eq. 8) is the sum of Capital Cost , Risk Cost , 
Opportunity Cost , Inspection Maintenance Cost , and penalties resulting from constraint 
violations. In constraint (9), the replacement date of turbine and generator of each group should be performed at 
the same time. In Case of having different replacement date for Turbine and generator of each group i, the penalty 

will be added to the objective function. Constraints (10) and (11), the replacement date of group i should be 
after date .  and  will be added to the objective function if these constraints are not met. In constraint 
(12), each year only T number of group can be replaced. tallies yearly replacements, moreover,  
denotes the maximum number of GTA replacement at each year. represents the penalty imposed for surpassing 
the maximum allowable number of replacements each year. Lastly,  which represent the lifetime of turbine 
and generator in group i, respectively, should be integer. 

3.2. Genetic Algorithm (GA) 

GA has been widely used to find the optimal solution of highly complex practical problems (Popov, 2005). In 
this study, to solve the explained model, a GA has been implemented. GA establishes a searching technique by 
combining the idea of survival of the fittest and an interbreeding population. The strings and the best interbreed 



 

are ranked to produce new strings, which are closer to the optimal solution for the problems. Different aspects of 
GA, such as objective function, crossover, and mutation, are discussed below. 

 
Objective function 
The objective function takes the solution encodings as input, then produces a result that quantifies how good 

that solution is. Due to the constraints provided above, penalty functions are also used to penalize solutions by 

algorithm to search out of the feasible area and on the frontier. 
 
Crossover and mutation 
To produce off-springs for the next population, crossover and mutation operations are used. In the crossover, 

more than one parent is selected, and one or more off-springs are produced using the genetic material of the parents.  
Here, two types of crossovers named 'single point' and 'multi-point' are used. In the single-point crossover, to create 
new offspring, a random crossover point is chosen and the tails of its two parents are swapped. Double-point 
crossover is a modification of one-point crossover in which two segments are exchanged to produce new offspring. 
Figure 3 shows a double point crossover. To maximize diversity and avoid premature convergence into a local 
optimal solution, the mutation operator is used. In mutation, we select one or more random bits and flip them. 
Figure 4 shows a solution before and after mutation.  

 

 

Fig.3. Double-point crossover operator. 

 

 

Fig.4. Mutation operator. 

4. Results 

This section examines six power plants that have had various groups of turbines and generators installed at 
different years. Each power plant's combination of turbine and generator follows a different probability 
distribution. For example, Power Plant A, which was installed in 2011, has four GTA combinations where the 
turbines follow a Weibull distribution with a shape parameter of 80 and scale parameter of 5, while the generators 
have 67 and 4.6 as their scale and shape parameters, respectively. The replacement cost and initial capital cost for 
the turbines and generators for each power plant are assumed to be the same. There are no plans to upgrade the 
design of power plant A. Details about all the GTA for each power plant can be found in Table 2. 

A genetic algorithm was used to model to find a solution, considering a 10-year time frame for upgrading the 
turbines and a price of 40$ per MWh increase in productivity due to the upgrades. The constraints were that 
replacement actions must begin after 2030, with a maximum of two GTA replaced per year. The results, shown in 



 

Table 3, list the costs for each GTA in each power plant, with the overall cost for the entire network being 29.98 
million dollars. Figure 4 displays the Life Cycle Cost for the first GTA in Power Plant A. 
 

Table 2: Input data of six power plant generations. 

Power 
plants 

Tur. Probability 
Distribution 

Increase in 
productivity 
(MWh) 

Sudden 
Replacement Cost 

Initial Capital 
Cost 

Set up 
date 

Number of 
GTA 

Gen. 

A 
T Weibull (80, 5) 

0% 
10 M$ 6 M$ 2010 

4 
G Weibull (67, 4.6) 8 M$ 4 M$ 2010 

B 
T Expo. (0.008) 

1% 
10 M$ 6 M$ 2013 

3 
G Expo. (0.087) 8 M$ 4 M$ 2013 

C 
T Gamma (40, 2) 

1% 
10 M$ 6 M$ 2014 

3 
G Gamma (45, 1.3) 8 M$ 4 M$ 2014 

D 
T Expo. (0.007) 

1% 
10 M$ 6 M$ 2020 

2 
G Expo. (0.001) 8 M$ 4 M$ 2020 

E 
T Weibull (75, 4) 

0% 
10 M$ 6 M$ 2000 

1 
G Weibull (70, 5) 8 M$ 4 M$ 2000 

F 
T Expo. (0.006) 

1% 
10 M$ 6 M$ 1982 

2 
G Expo. (0.001) 8 M$ 4 M$ 1982 

 

: LCC for the first GTA in plant generation (a). 

 
  



 

Table 3:  

Power 
plants 

Tur. 
ESL Replacement 

Date 

Capital 
Cost 
(M$) 

Inspection 
Cost (M$) 

Opportunity Cost 
(M$) 

Sudden 
Replacement 

Cost (M$) 

Sum 
(M$) 

Gen. 

A 
T 35 2045 0,997 

0,35 0 
0,159 1,506 

G 35 2045 0,664 0,394 1,408 

B 
T 23 2036 1,844 

0,23 0,336 
1,681 3,937 

G 23 2036 1,229 1,19 2,831 

C 
T 17 2031 2,509 

0,17 0,126 
0,684 3,426 

G 17 2031 1,673 1,571 3,476 

D 
T 32 2052 1,162 

0,32 0,44 
2,007 3,709 

G 32 2052 0,775 0,252 1,567 

E 
T 33 2033 1,104 

0,33 0 
0,368 1,802 

G 33 2033 0,736 0,184 1,25 

F 
T 34 2032 1,049 

0,34 0,48 
1,845 3,474 

G 34 2032 0,699 0,32 1,599 

 
5. Conclusion 

In conclusion, this paper presents a life-cycle cost model that estimates the economic service life for turbines 
and generators in power plants. The model considers various factors such as the capital cost, cost of inspection, 
and risk costs in its calculations. The study uses historical data and experts' opinions to calculate a probability 
distribution for each turbine and generator to determine the optimal lifetimes for each turbine-generator unit and 
help maximize the assets' value. The replacement schedule for the units in the hydro power plant network may 
face restrictions and adjustments due to various constraints, including limited replacement windows, simultaneous 
replacement of turbines and generators, and external limitations. To address this, an optimization model was 
developed with the aim of minimizing the total cost for the entire system. The model was solved using Genetic 
Algorithms with the optimal replacement time for each turbine and generator as the variables. This approach 
provides a solution that effectively balances the constraints and optimizes the system's cost. 
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