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Abstract 

Rolling bearings are widely used, and essential components in industrial systems. Under harsh operating environments, the 
bearing degradation process presents complex non-linear characteristics, and the accurate remaining life prediction method 
plays a vital role in the stable operation and timely replacement of bearings. This paper proposes a particle filter prediction 
method based on a hybrid model for the complex degradation process of bearings. The particle filter method is improved based 
on the particle swarm optimization algorithm and the large likelihood estimation algorithm, which improves the parameter 
updating efficiency and prediction accuracy. A hybrid degradation model is established based on symbolic regression to 
discover multiple degradation models, which can eliminate the strong assumption problem caused by a single degradation 
model. The proposed method achieves better prediction accuracy compared to the Paris formula and can better predict the 
remaining life of bearings. 
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1. Introduction 

Rolling bearings are the core component of the rotating system, known as the "joints" of industrial machinery. 
It serves for a long time in a harsh operating environment. It is prone to a variety of failures, which has a significant 
impact on the safety and reliability of the transmission system. Accurately predicting the remaining useful life of 
bearings is essential for maintaining the regular operation of machinery and taking timely maintenance action to 
prevent serious accidents. 

The remaining useful life of a bearing is the time from operation to failure, and the methods for predicting 
remaining useful life are usually divided into physical model-based methods, machine learning-based methods and 
statistical methods. Physical model-based methods include the Paris formula (Paris et al., 1963), Forman formula 
(Forman et al., 1967), and cumulative damage formula (Li et al., 2021) for studying crack propagation of 
components. For degradation problems with precise failure mechanisms, their prediction accuracy is high. Still, 
for complex systems, it is difficult to establish accurate physical models, and the existing physical models are 
difficult to generalize, significantly limiting the application of physical models. 

Machine learning-based methods, such as LSTM (Ma et al., 2020), RF (Patil et al., 2018), SVR (Wang et al., 
2015), etc., discover the degradation process by learning from a large amount of data and can model multi-
dimensional, complex, and non-linear systems without an accurate physical model. However, they require large 
amounts of data and can only provide point estimates of remaining useful life that do not consider the uncertainty 
of the results. 

Statistical methods such as Wiener (Wen et al., 2018), Gaussian (Aye et al., 2017), Gamma (Xu et al., 2012) 
and Markov (Chen et al., 2019) processes can estimate the degradation process using assumed degradation models 
and update the degradation model using real-time observations without needing an accurate physical model. 
However, due to the strong assumptions on the degradation process, it is often difficult to match the actual 
degradation situation. 
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Particle filter is a statistical method that does not make too many assumptions about the degradation process 
and is suitable for non-stationary systems with non-Gaussian noise and non-linear state equations, which uses all 
the historical data for joint estimation of the state and model parameters and can deal with the high uncertainty in 
long-term prediction. It has become one of the most popular methods for dealing with the degradation of non-
Gaussian and non-linear systems. Many scholars have successfully carried out equipment's remaining useful life 
and reliability prediction works in recent years using particle filters and their improved techniques. Qiu et al. used 
an improved cuckoo search particle filter algorithm to predict the state of charge of lithium-ion batteries (Qiu et 
al., 2020). Zhang et al. predicted the remaining lifetime of proton exchange membrane fuel cells in relation to the 
performance degradation recovery phenomena based on particle filter (Zhang et al., 2016). Li et al. implemented 
an adaptive order-based particle filter to predict the residual wear life for aviation hydraulic pumps (Li et al., 2020). 

Current particle filter is usually based on a single state equation. Due to the complexity of the degradation 
process of bearings, which may exhibit different degradation trends in different environments, it is difficult to 
track the actual degradation process with a single fixed model (Cui et al., 2022, Liao et al., 2016). It is difficult to 
generalize a single-state equation to the complex degradation process of bearings. To overcome the limitations 
caused by the single state equation of particle filter, this paper proposes a rolling bearing life prediction method 
based on the hybrid multiple degradation models. The main contributions of this paper are: (1) using the particle 
swarm optimization algorithm and the maximum likelihood estimation method to improve the particle filter, which 
increases the efficiency of parameter updating; (2) based on the symbolic regression to discover possible 
degradation models from the historical data, which removes the influence of solid assumptions of the statistical 
model; (3) using hybrid, multiple degradation models to discover the model that best reflects the degradation state 
at the current moment and make an accurate remaining useful life prediction. 

The rest of this paper is organized as follows: section II describes the specific process of the rolling bearing life 
prediction method based on multiple degradation models, including feature extraction, feature fusion, degradation 
models mining, and degradation process prediction. Section III analyses the XJTU-SY bearing dataset and 
compares the prediction effect with the conventional particle filter algorithm based on Paris formula to verify the 
feasibility of the proposed method. Section IV gives the conclusions of the study. 

2. Methodology 

This section describes the particle filter algorithm and its improvement, feature extraction and fusion 
algorithms, symbolic regression algorithm and the overall framework of the algorithm in this paper, which are 
used in the process of remaining useful life prediction of rolling bearings. 

2.1. Particle filter 

Particle filter is based on Monte Carlo and sequential Bayesian inference methods. It is widely used to solve 
the problem of predicting the degradation process of non-Gaussian, non-linear and non-smooth systems(Djuric et 
al., 2003). A set of state equations  and observation equations  can describe 
the system's dynamic behavior. Where  is the state of the system at time ,  is the state transfer function, 

 is the observation of the system at time ,  is the observation function, and  and  are the state and 
observation noise of the system, respectively. 

The purpose of Bayesian filter is to obtain the posterior probability density  of  based on the 
observation sequence . Particle filter can be done by Monte Carlo methods by approximating the posterior 
probability density function based on the values  and weights  of the  particles as in Eq. 1. 

  (1) 
If the particles number is sufficient, it can be assumed that the edge probability density as in Eq. 2. 

   (2) 

Since the posterior probability density function is unknown, the particles cannot be sampled from it but must 
be sampled from an artificially selected significant distribution  and then adjusted with weights as in 
Eq. 3. 

 (3) 

The recursive relationship of the weights can be obtained from the full probability formula as shown in Eq. 4. 



 (4) 

Where  is the significant density function,  is obtained from the observation equation, 
and  is obtained from the equation of state. 

 
This is the general flow of the particle filter algorithm: 
(1) Enter the last moment state value , the weight value  and the current moment observation value 
, where . 
(2) Sample  particles  from the significant density function  , where 

. 

(3) Assign weights  to each particle and normalise them. 

(4) To determine if resampling is necessary, calculate the adequate sample number   and compare it to the 
threshold . Resampling is required if the adequate number of samples is less than the threshold. The final output 

includes the weights  at times  and the state estimate . 

2.2. Improved particle filter algorithm 

As the particle filter algorithm is less efficient in updating the parameters with joint estimation, it is challenging 
to drive the parameters to obtain the best value. Therefore, this paper proposes a particle filter parameter updating 
method based on the particle swarm optimization algorithm and the maximum likelihood estimation algorithm to 
improve the particle filter algorithm. The likelihood function shown in Eq. 5 denotes the probability that the 
parameter takes  when the observation value takes . 

  (5) 

Eq. 6 to Eq. 10 derive an approximate expression of the likelihood function. 

 (6) 

 (7) 

 (8) 

  (9) 

 (10) 

The particle swarm optimisation algorithm simulates the foraging behaviour of bird flocks with few parameters 
and fast calculation, which is suitable for parameter optimisation of particle filter (Wang et al., 2018). The 
maximum likelihood estimation algorithm uses Eq. 10 as the likelihood function to find the parameter that makes 
the degraded state take the maximum probability of the true value in the whole state space(Yin et al., 2021). By 
combining the particle swarm optimization algorithm and the maximum likelihood estimation algorithm, the 
optimal parameter value  that maximises the likelihood function  can be obtained in each 
round of calculations. 

2.3. Feature extraction 

To monitor the degradation state of bearings, it is essential to extract features from the monitoring signals, 
typically vibration signals. These features should reflect the degradation information of the bearings. This section 
covers feature extraction methods based on time-domain, frequency-domain, and time-frequency-domain. The 
features used to assess degradation can be categorized into three types: time domain, frequency domain, and time-
frequency domain. Time domain features are calculated directly from the vibration signals (Li et al., 2014), while 
frequency domain features are extracted by Fourier transforming the original vibration signals (Wu et al., 2021). 
Time-frequency domain features are represented by the wavelet packet node energies obtained by the wavelet 
packet transforming the original data (Gao, 2022). Table 1 shows the degradation features used in this section. 

 



Table 1. Bearing degradation characteristics. 

Type Feature 

Time-domain 

Max 

Root Mean Square 

Absolute Mean 

Peak-to-peak Value 

Margin Factor 

Skewness 

 

 

Frequency-domain 

Frequency Mean 

 

Frequency Root Mean Square  

Time-frequency-domain 

1st Node Energy 

2nd Node Energy 

3rd Node Energy 

4th Node Energy 

5th Node Energy 

6th Node Energy 

7th Node Energy 

8th Node Energy 

This section evaluated features using a composite metric that considers relevance, monotonicity, and robustness 
to eliminate irrelevant features with low relevance to the degradation process (Zhang et al., 2016). We classified 
the features into trend and random parts using a smoothing method as shown in Eq. 11.  

 (11) 

Where  is the trend component and  is the stochastic component. 
The correlation as shown in Eq. 12 denotes the degree of correlation between the degradation characteristics 

and the monitoring time. The larger the value, the more noticeable the change in the degradation characteristics of 
the bearing over time. 

  (12) 

Where  is the degradation characteristics at time ,  is the mean value of degradation characteristics,  is 
the mean value of the time series, and  is the total number of monitoring times. 

Monotonicity as shown in Eq. 13 refers to the trend of increasing or decreasing degradation characteristics. The 
larger the value of monotonicity, the greater the continuous monotonic degradation of bearing performance.  

  (13) 

Where  is the difference between two consecutive moments of the feature. 
Robustness shown in Eq. 14 refers to the ability of a feature to remain stable even when affected by noise 

interference. The greater the robustness, the more effectively the feature can demonstrate the degradation process 
of the bearing under the influence of noise.  

  (14) 

A comprehensive evaluation index that combines the effects of 
correlation, monotonicity, and robustness was established (Wang et al., 2023). Measure each degradation feature 
listed in Table 1 and select the features with the highest composite evaluation index for fusion. 



2.4. Feature Fusion 

Kernel Principal Component Analysis (KPCA) is a method for reducing dimensionality that uses a nonlinear 
mapping  to map the original input vector  into a high-dimensional feature space , and then 
computes the linear principal components in the high-dimensional feature space (Anowar et al., 2021). 

KPCA requires the computation of the eigenvalue problem in Eq. 15 (Cao et al., 2003): 

  (15) 

Where  is the covariance matrix of sample ,  is a non-zero eigenvalue, and  
is the corresponding eigenvector. 

The eigenvalue problem of Eq. 15 can be converted to the problem of Eq. 16: 

  (16) 

Where  is the kernel matrix, and the dot product operation is replaced by the kernel function in the high-
dimensional feature space  , which can be used to deal with  of any dimension 
without explicitly calculating . The corresponding eigenvectors of the kernel matrix can be calculated and 
normalised according to Eq. 17. 

After calculating and normalising the eigenvector i  corresponding to the kernel matrix , the principal 
components of  can be calculated according to Eq. 17: 

  (17) 

KPCA has numerous applications in feature reduction and fusion. This section employs kernel principal 
component analysis to downscale the filtered degraded features and fuse them into health factors reflecting the 
bearings' degraded nature. 

2.5. Symbolic Regression 

Symbolic regression is a supervised machine learning technique to discover a hidden mathematical expression 
or function that best fits the relationship between inputs and outputs in a given dataset(La et al., 2021). Unlike 
traditional regression methods, symbolic regression constructs a mathematical expression by searching and 
combining basic mathematical operators and functions rather than just finding the parameters of a mathematical 
model. By performing symbolic regression operations on the bearing dataset, it is possible to identify potential 
degradation models and to model degradation appropriately for bearings in specific operating environments. 
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Fig. 1. Flow of symbolic regression to uncover potential degradation models. 

2.6. Hybrid Models to Generate RUL Predictions 

There are multiple degradation models generated by symbolic regression at each moment in time, and traditional 
particle filter algorithms use only one equation of state to model the entire degradation process. Due to the high 
nonlinearity and complexity of the bearing degradation process, it is difficult to accurately model the entire 
degradation process using a single degradation model. Therefore, competitive modeling using multiple degradation 
models can solve this problem caused by a single model. When predicting the RUL at moment , assume that 
there are  alternative degradation models and use  degradation models to predict the future state of the bearing 
respectively. After obtaining the observed values at time , the prediction results of degradation model  are 
evaluated by Eq. 18. 



  (18) 

The result of the degradation model with the lowest error is taken as the RUL of the bearing at the moment . 

  (19) 

The method proposed in this paper is illustrated in the figure below. Firstly, the bearing vibration dataset is 
analyzed in the time-frequency domain to extract multiple degradation features. Next, the degradation features are 
evaluated and screened based on comprehensive indexes considering correlation, monotonicity, and robustness. 
Using the kernel principal component analysis method, the selected features are combined to create a health factor 
representing the bearing's degradation state. Symbolic regression is used to identify potential degradation models 
from the dataset. An improved particle filter algorithm is then employed to predict the remaining service life of 
the target dataset, taking into account multiple degradation models. 
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Fig. 2. Flow of bearing remaining service life prediction method based on hybrid degradation model. 

3. Case study 

This section validates the proposed method using the XJTU-SY bearing dataset (Wang et al., 2018). The 
platform comprises alternating current motors, motor speed controllers, rotating shafts, support bearings, hydraulic 
loading systems, and test bearings. The test includes three types of working conditions, as shown in Table 2, with 
five bearings in each type of working condition. This section focuses on the first three bearings in Case 1. Bearing 
1_1 and Bearing 1_2 vibration signals are used to identify alternative degradation models. The remaining service 
life prediction is based on the data of Bearing 1_3. 

Table 2. Bearing data sets analysed in this paper. 

Operating condition Dataset Sample size Actual lifetime Failure position 

1 

Bearing 1_1 123 2h3min Outer ring 

Bearing 1_2 161 2h41min Outer ring 

Bearing 1_3 158 2h38min Outer ring 

Fig. 3 displays the vibration data of Bearing 1_1. The data exhibits significant noise, making it challenging to 
directly determine the bearing degradation state. However, the data also contains information about the bearing 
degradation, necessitating the extraction of features that reflect the bearing degradation state. 



 

Fig. 3. Horizontal vibration data for Bearing 1_1. 

The vibration data were first feature-extracted. The degraded features were evaluated based on correlation, 
monotonicity, and robustness. The results are shown in Table 3. 

Table 3. Evaluation of features for dataset Bearing 1_1. 

Feature Correlation Monotonicity Robustness Composite index 

Time-
domain 

Max 0.8926 0.2459 0.3599 0.4094 

Root Mean Square 0.8638 0.5737 0.3671 0.5698 

Absolute Mean 0.8596 0.5901 0.3673 0.5772 

Peak-to-peak Value 0.8905 0.2459 0.3616 0.4095 

Margin Factor 0.1315 0.0327 0.3618 0.1512 

Skewness 0.4917 0.2131 0.3648 0.3143 

Peak Index 0.5219 0.0491 0.3490 0.2337 

Pulse Index 0.3853 0.0327 0.3544 0.1998 

Frequency-
domain 

Frequency Mean 0.8942 0.6065 0.3673 0.5923 

Frequency 
Concentration 0.7166 0.5409 0.3697 0.5247 

Frequency Root 
Mean Square  0.8531 0.5573 0.3668 0.5593 

Time-
frequency-
domain 

1st Node Energy 0.6993 0.2561 0.3411 0.3703 

2nd Node Energy 0.6268 0.2066 0.3680 0.3390 

3rd Node Energy 0.7109 0.4876 0.3662 0.4958 

4th Node Energy 0.8609 0.3719 0.3669 0.4682 

5th Node Energy 0.9016 0.4545 0.3666 0.5175 

6th Node Energy 0.8949 0.5702 0.3668 0.5741 

7th Node Energy 0.8968 0.5041 0.3660 0.5412 

8th Node Energy 0.8892 0.4545 0.3662 0.5150 

KPCA 0.9004 0.7213 0.3743 0.6531 

The degradation features are screened by taking the comprehensive evaluation index higher than 0.5. The 
screened features are fused using kernel principal component analysis, and the results show that the fused features 
have better properties than the single degradation features. Based on the K-means clustering algorithm, the whole 
degradation process of the bearing is divided into the normal operation stage and the degradation stage(Na et al., 
2010). The remaining life prediction is not carried out in the normal operation stage, and the remaining life 
prediction is started when the bearing operates to the degradation stage. 

Learning based on symbolic regression algorithms for the Bearing 1_1 and Bearing 1_2 datasets yields a 
collection of alternative degradation models, as shown in Table 4. These degradation models are partially capable 
of modelling the degradation process of the bearings and can therefore be used as alternative degradation models 
for the bearing under study. 



Table 4. Degenerate models obtained from symbolic regression. 

Dataset Degradation model 

Bearing 1_1  

Bearing 1_1  

Bearing 1_2  

Bearing 1_2  

Alternative degradation models are applied to the Bearing 1_3 data set, and the predicted future state value 
corresponding to each degradation model is calculated at each moment and compared with the observed data at 
the next moment, and the degradation model with the smallest error is selected for the remaining service life 
prediction at that moment. 

Eq. 20 shows the state equation for the commonly used Paris formula. 

 

The comparison between the results of the method proposed in this section and those predicted by the commonly 
used Paris formula is shown in Fig. 4 and Fig. 5. The hybrid degradation model can effectively reduce the 
prediction error of a single degradation model for the complex degradation process of bearings. 
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Fig. 4. Comparison of RUL predicted by hybrid model and single exponential model. 
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Fig. 5. Comparison of errors in predicting RUL between hybrid model and single exponential model. 

Fig. 6 displays the uncertainty distribution of the remaining useful life (RUL) predicted by the method described 
in this section for nine time nodes (from 10 minutes to 90 minutes in 10-minute intervals). The uncertainty of the 
RUL prediction decreases over time due to the particle filter obtaining more monitoring data and a better 
understanding of the degradation process of the bearings. 
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Fig. 6. Distribution of RUL uncertainty predicted by the hybrid model. 

4. Conclusion 

This paper proposes a method for predicting hybrid multiple degradation models based on symbolic regression. 
The aim is to address the challenge of accurately predicting a single model for bearings' complex, nonlinear 
degradation process. The method uses symbolic regression algorithms to learn potential multiple degradation 
models from the bearing dataset. This approach can improve the adaptivity of the remaining life prediction of 
bearings. Using multiple degradation models and observed data for judgment at the next moment can improve the 
bearing life prediction accuracy and eliminate the strong assumption problem associated with a single degradation 
model. A comparison between this method and the single-exponential model based on the Paris formula 
demonstrates that this method has superior prediction accuracy and ability for remaining bearing life. 

Glossary 

Glossary Full Name 

KPCA Kernel Principal Component Analysis 

LSTM Long Short-Term Memory 

PCA Principal Component Analysis 

RF Random Forest 

RUL Remaining Useful Life 

SVR Support Vector Regression 

XJTU-SY Ltd. 
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