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Abstract 

Prognostics and Health Management (PHM) has proven to be an effective tool for reliability and safety of systems, especially 
with the rise of Industry 4.0. For PHM of systems, AI-based condition monitoring techniques have significantly improved the 
performance of remaining useful life (RUL) predictions. However, most RUL prediction models based on traditional deep 
learning do not consider physical-knowledge during their training process and have no physical constraints in the model 
dynamics. As a result, the model lacks explainability and generalizes poorly on unseen data. Physics-informed deep learning 
intends to address these concerns by embedding physical knowledge in training the deep learning models. In this paper, a two-
phase physics-informed deep learning architecture is proposed to integrate physical knowledge for RUL prediction. In phase I, 
the monitored degradation data is filtered using a neural network trained on historical degradation data. When training the 
network, physical knowledge on the degradation path is embedded in the loss function. In phase II, the filtered degradation 
measurements are used to train a second neural network for predicting the RUL. The proposed architecture is illustrated on an 
open-source dataset of lithium prismatic batteries. The results show that considering the physical knowledge worsens the 
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1. Introduction 

With the rise of Industry 4.0, PHM has grown to be a necessity in order to intensify reliability and safety of 
systems. PHM aims to predict the failure of a system preemptively. Based on such predictions, informed planning 
decisions can be made, and unexpected downtime can be limited. This is mainly done by assessing the system 
dynamics and modeling the degradation process. By monitoring the degradation process, predictions of the 
remaining useful life (RUL) of a system are made using different methods. 

Existing methods for degradation modeling and RUL prediction can be broadly classified into physics-based 
models and data-driven models (Bhat, 2023). Physics-based models capture the underlying governing physics of 
the system, and construct an empirical relationship between the variables. They make use of mathematical 
functions and equations to represent the degradation of the system. A thorough analysis of the system to uncover 
all the required precursors for the failure of the system, is a requisite for physics-based modeling. However, this 
is often difficult to achieve practice due to the complexity of the systems. Data-driven methods do not require a 
complex analysis of failure modes and an identification of all responsible precursors. In fact, these are black - box  
models that are trained based on observed data, and infer the model parameters from it (Zio, 2022; Jardine, 2006). 
Such data-driven models are capable of constructing relationships between system parameters directly from 
observation data. When the training data are sufficient, the data-driven models have proven to be powerful in 
modeling complex degradation behavior and predicting the RUL. However, the need to use large amounts of data 
to learn the failure and degradation behavior limits the application of data-driven models in practice. Additional 
drawbacks for data-driven models are issues related to overfitting and poor generalization as no physical 
knowledge on the degradation and/or failure processes is considered. To address these limitations, hybrid physics-
informed machine learning models are proposed that leverage the physical knowledge together with data-driven 
models to model complex degradation behaviors. Physics-informed machine learning uses physical knowledge to 
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complement traditional machine learning models. In the literature, there are two common ways to inject physical 
knowledge into data-drive machine learning models (Xu, 2022): 

i) Physics-informed loss function - This approach embeds physical constraints of the system into the loss 
function of the neural network. A typical physics-informed loss function is as follows: 
 

where the first term is the typical loss function used in training machine learning models, commonly defined as 
the absolute difference or the mean squared difference of the true and predicted value. The second term in the loss 
function enforces physical constraints into the system. Typical forms of the physical constraints include ordinary 
differential equations, partial differential equations, or other equations which describe the behavior of the system. 
 

 ii) Physics-informed architecture - This approach uses physics-based models and data-driven models 
separately, and then fuses the results from the two individual models. This is generally done by using the output 
of the physical model as an input to the data-driven model. The embedding of physical knowledge into the neurons 
or the layers of the neural network form a physics-informed architecture. Bayesian physics-informed models also 
fall under this category where the probabilistic nature is introduced in traditional machine learning models. The 
use of such hybrid approaches has been successful in developing robust, theory-affirming models. They also 
require less training data as the physical knowledge can help guide the model (Chao, 2022). These models have 
been powerful in generating a solution space for ordinary and partial differential equations (Raissi, 2019). In PHM, 
physics-informed machine learning models have been applied and proved to significantly improve the performance 
of RUL prediction (Y. He and Wang, 2022). In this paper, we develop a two-stage physics-informed neural 
network for RUL prediction of complex systems. In the first phase, we use physics to filter the data using a neural 
network thereby creating a noise filtered dataset.  This allows for the neural network in the 2nd phase to make 
informed predictions about the RUL of the system. We illustrate our proposed approach for the RUL prediction of 
lithium prismatic batteries. The results show that our approach estimates the RUL of the batteries with decreasing 
prediction errors closer to the actual time-to-failure compared to the methods deprived of physical knowledge. 

The rest of this paper is organized as follows. Section-I gives a brief overview of the existing techniques and 
discusses the challenges associated with fully data-driven methods for RUL prognostics. In Section-II, the 
architecture of a physics-informed neural network for RUL prognostics is given. Section-III provides an overview 
of the results obtained for a case-study on RUL prognostics for lithium prismatic batteries. Section-IV provides 
concluding remarks and future scope. 

2. A two-stage physics-informed neural network architecture for RUL predictions 

Machine learning methods have been widely used in the field of PHM for fault prognosis of systems. Unlike 
semi-supervised learning models like - Kalman filter (KF), Extended Kalman filter (EKF), Particle filter (PF) who 
follow a recursive approach, supervised learning models are trained on data without the need to recursively update 
the state variables. This paper proposes a physics-informed machine learning architecture which uses inferred 

loped RUL prediction framework comprises 
two phases, as shown in Fig 1. In phase 1, the acquired raw condition-monitoring data is filtered through a 
convolutional neural network. The purpose of this phase is to remove the noise in the condition-monitoring data 
so that the cleaned data can be used for training a neural network for RUL prediction in phase 2. Physical 
knowledge on the degradation path is embedded in the neural network (See Section II-A). After removing the 
noise, the cleaned condition-monitoring data are fed to phase 2, where a new neural network is trained for RUL 
prediction. Physical knowledge on the relationship between RUL and time can be encoded in this phase (see 
Section II-B). 

 

 

 

 



 
Fig. 1. Architecture of the 2-phase Neural Network for RUL prediction. 

 

2.1. Neural Network - I 

In phase 1, a neural network is designed to filter the noise in the original condition-monitoring data. These 
condition-monitoring data consists of variables that have a direct or an indirect effect on the degradation behavior. 
Since condition-monitoring data are acquired from sensors, these are usually subject to noise. As per Fig. 1, the 
condition-monitoring data is fed into the first neural network (NN-I), which primarily performs the task of filtering 
the noisy dataset using a knowledge-embedded loss function. Therefore, the output of the network is the same 
variable as the input variable, after removing the noise. 

The neural network used for filtering comprises one LSTM layer (64), two dense layers (16 and 1 neurons, 
respectively), and multiple dropout layers. The LSTM uses a sliding window where the set of values used in the 
window are used to predict the next value. The sliding window uses a set of 32 data points of battery capacity 
values as an input to predict the next value of the battery capacity. The hidden dense layer adopted a piecewise 
linear function (ReLU) and the output layer adopted a linear activation function. The input and the output 
dimension is the same, i.e., (32,1). The network is then trained on a large number of historical degradation paths.  

Physical knowledge on the form of degradation path can be integrated in the training of the neural network. In 
this paper, we propose to integrate the physical knowledge into the loss functions used in the training phase, as 
shown in Eq. (1). 

 (1) 

 
The first modulus term in Eq. (1) is the mean absolute error between the true and predicted value. The second 

modulus term is the physics-informed error and describes our understanding about the physical knowledge on the 
degradation path, where  is the prediction of a theoretical model under the same conditions as the inputs 
of the neural network. The theoretical model can be derived based on physics-of-failures (Xu, 2021). It can also 
be established empirically based on previous experiments/observations (Gray, 2021). A custom loss function 
consists of the mean absolute error function and the physics-informed error. The physics-informed error introduces 
physical constraints in the neural network with the help of a theoretical model. The physics-informed error is 
calculated by taking the absolute difference of the predicted value and the theoretical estimate . Here, 

 can be derived from theory or be an empirical model derived from historical data. Since the objective 
of the loss function is to minimize the loss, the minimal value of the physics-informed error corresponds to the 
best theoretical fit.  NN-I adopts this knowledge-constrained loss function to provide filtered estimates. These 
filtered estimates are known as neural filtered values. They are fed as an input to NN-II which performs the task 



of predicting the RUL. In testing, NN-I is fed the live experimental data collected through sensors and the raw data 
is then filtered through the physics-embedded structure which can then be used to perform RUL estimation. 

2.2. Neural Network  II 

Neural Network II (NN-II) uses the obtained neural filtered estimates as an input to predict the RUL, which is 
the output of the two-stage network. The neural filtered estimates of the independent variables which are identified 
precursors for the degradation of the system, can be used to calculate the RUL. Neural Network II consists of a 3-
layer neural network which employs Long-Short Term Memory, which uses a sliding window technique to predict 
RUL for a given time window. The NN-II network was constructed with one LSTM layer (16), two dense layers 
(8 and 1 neurons, respectively), and multiple dropout layers. The hidden layer and the output layer adopted a 
piecewise linear function (ReLU). NN-II assumes no underlying physical knowledge for RUL explicitly. As such, 
the mean absolute error loss was used as the loss function for this network. The theoretical RUL was calculated as 
follows: 

. 
 

After the neural estimates are labeled with the theoretical RUL, NN-II performs a supervised learning task 
where the objective is to predict the RUL for the test data given a window of data points. The neural filtered 
estimates of the raw data collected is passed to NN-II where it continuously provides an estimation of the RUL for 
a given window of data points.   
3. Case Study - RUL prognostics for lithium prismatic batteries 

To illustrate our proposed 2-phase Neural Network architecture for RUL prediction, we consider the battery 
dataset available at the public repository CALCE (University of Maryland) (Wei He, 2011). This dataset contains 
a total of four batteries (CS2_35, CS2_36, CS2_37, CS2_38) which are cycled at a constant current protocol of 
1C. For each battery, the following measurements are recorded: the charging capacity, constant current constant 
time (CCCT), constant voltage constant time (CVCT), discharging capacity, resistance. These measurements are 
available until the failure of the batteries. Here, a battery failure is defined as the first moment the capacity of this 
battery is below 80%.  

The State of Health (SOH) of a battery at a given cycle is determined based on the maximum capacity achieved 
by discharging this battery from (100%) to (0%) charge in the considered cycle. We note that in the dataset, 
batteries undergo complete charge and discharge cycles. Moreover, the nominal capacity is 1.35 Ah for all four 
batteries in the dataset.  

 
(a)                                                                                   (b) 



 
(c)                                                                             (d) 

 

Fig. 2.  (a)  Discharge capacity over time for CS2_35; (b) CS2_36; (c) CS2_37; (d) CS2_38. 

In line with existing research (Ma, 2019), we consider the discharge capacity as the health indicator for the 
ot of the 

discharge capacity variation over time for the four batteries considered in the dataset.  

3.1. Integrating physical knowledge 

Polynomial and exponential models are widely used for modeling battery capacity degradation (Micea, 2011; 
Xing 2013). In this study, we take the widely accepted double exponential model as the physical model for the 
degradation path, as shown in Eq. (2). For the sake of comparison, both traditional and physics-informed 
frameworks were employed. The traditional framework makes use of a standard mean absolute error function to 
train the model. In contrast, the physics-informed framework makes use of a knowledge-constrained loss function. 
In this manner, the experimental data is filtered and simultaneously knowledge is embedded into the model: 

 , (2) 
 

where  is the capacity of the battery, x is the cycle number, and a > 0, b < 0, c < 0, d > 0 are model parameters 
which are to be estimated.  The coefficients of the exponential model in eq. (2) are estimated by fitting the curve 
with the least square method to the curves used for training during cross-validation. We note that the test data is 
only used for prediction and thus no coefficients were inferred using it. After the coefficients of the model are 
calculated, the model calculates the empirical value of the discharge capacity at every cycle during the training 
process of the model. The physics-informed error uses the empirical value at every cycle and calculates the custom 
loss.  

4. Numerical Results - RUL prognostics for lithium-prismatic batteries 

We apply our 2-phase Neural Network approach for RUL prediction for the four batteries in the CALCE dataset. 
A 4-fold cross validation is performed for the training and testing of the 2-phase neural network. As such, the 
training data used for a certain fold is only passed through the network to predict the RUL. It does not update 
weights and biases nor is it used to infer the coefficients for the theoretical model.  



 
Fig. 3. RUL Predictions vs. the True RUL. 

 
Fig. 3 shows the predicted RUL using the physics-informed prognosis framework versus the traditional 

approach where CS2_38 is used for testing. The average loss for the traditional approach is 101.09 cycles whereas 
the average loss for the two-phase method is 71.83 cycles. The loss for the neural filtered approach using embedded 
physical knowledge is lower compared to the traditional method and the error decreases continuously as it gets 
closer to failure. Table 1 shows the average values of loss for RUL prediction performed for multiple experiments 
with a 4-fold cross validation. The table compares the RUL loss with and without physical knowledge. 

 
 

Table 1. Loss of the RUL prediction (cycles). 

 Traditional model Physics-informed model 

Fold-1 132.931 129.048 

Fold-2 118.736 90.318 
Fold-3 69.361 67.457 
Fold-4 189.087 185.295 
Average value 127.528 118.029 
Standard deviation 49.259 51.547 

 

 

Figures 4 and 5 illustrate the fitting for the discharge capacity of the battery with and without physical 
knowledge after the values were obtained from NN-I. The loss with physical knowledge was 0.0483 and without 
was 0.0477. Multiple experiments with a 4-fold cross validation were performed. The average values are shown 
below in Table 2. 

 Table 2. Loss for discharge capacity. 

 Traditional model Physics-informed model 
Fold-1 0.022834 0.022283 

Fold-2 0.047136 0.048865 
Fold-3 0.041240 0.036540 
Fold-4 0.053375 0.052791 
Average value 0.041146 0.040119 
Standard deviation 0.013175 0.013759 

 
 



  
         Fig 4. (a)  Capacity Prediction with Physical Knowledge; (b) Capacity Prediction without Physical Knowledge. 

 
It is interesting to note that the loss is higher while filtering the discharge capacity data using physical 

knowledge than without. However, the exact opposite phenomenon takes place while predicting the RUL. The 
inference from this result is that when physical knowledge is introduced, performance of NN-I slightly deteriorates 
as the physical constraints prevent overfitting of values and provide better theory-affirming estimates. This is 
favorable, as the performance while predicting RUL slightly increases.  

Conclusion 

This paper proposed a physics-informed two-phase neural network to predict the RUL of complex systems. 
This proposed multi-neural network provides a provision for filtering and embedding physical-knowledge 
simultaneously. The knowledge is inferred from a theoretical or an empirical model which describes the dynamics 
of the system. The knowledge is embedded in the first network which provides filtered estimates of the data to the 
second network which performs the task of predicting RUL. The proposed network was applied to predicting the 
RUL of prismatic batteries. An empirical model was derived that captured the degradation of the battery over time. 
The empirical model worked jointly with NN-I to provide physics-informed estimates of the data by using a custom 
loss function that uses physics-informed error. NN-II made use of these filtered estimates to predict the remaining 
useful life of the battery.  

With the introduction of physical knowledge into the architecture, performance of NN-I slightly decreased. 
This implied that during the training process, the physical constraints prevented overfitting of data. Furthermore, 
RUL prediction in NN-II improves when incorporating physical knowledge compared to its performance without 
knowledge. It should also be noted that it is possible to integrate knowledge into Phase II of the proposed method 
if it is derivable. If sufficient physical knowledge is available to establish a theoretical dependency between 
variables involved in NN-II, the loss function can be customized. For instance, in crack growth prediction, paris 
law can be used to theoretically establish the rate of crack growth over time. This can be used to predict the RUL 
of a system affected by fatigue crack failure (Fang and Sun, 2022).  
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