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Abstract 

The main goal of this paper is to investigate, in the field of maintenance optimization, the performances of a new gamma 
process with random effect and bathtub-shaped degradation rate function. Maintenance costs are determined by applying an 
adaptive hybrid age-/condition-based policy recently proposed in the literature, which consists in measuring the degradation 
level of the unit at a first (age-based) inspection time and using a condition-based rule to decide whether to immediately 
replace the unit or to postpone its replacement to a future time. The policy is denominated adaptive, since the future 
replacement time is decided, unit by unit, based on the outcome of the inspection. The optimal maintenance policy is defined 
by minimizing the long-run average maintenance cost rate. After each replacement the unit is considered as good as new. The 
lifetime of the unit is defined by using a failure threshold model. Maintenance costs are computed by accounting for 
preventive replacement cost, corrective replacement cost, inspection cost, logistic cost, and downtime cost (which depends on 
the time spent in a failed state). An example of application demonstrates the affordability of the approach. A study is also 
performed, by using simulated data generated under the model with bathtub-shaped degradation rate function, to investigate 
the effect on maintenance costs of fitting the data by using a gamma process with random effect where the age function has a 
classical power law shape. 
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1. Introduction 

In the literature, it is often observed that the degradation rate (here intended as the derivative of the mean 
function) of real-world technological units shows three phases: a first (early) phase where the degradation rate 
decreases, a second one where it is constant, and a final third (catastrophic or degenerative) phase where it 
increases; e.g., see (Gertsbakh and Kordonskiy, 1969). Nonetheless, the vast majority of degradation models 
proposed in the literature are not able to describe this kind of behavior, a circumstance that could limit their 
effectiveness in the case of degrading units whose operational life shows all the mentioned three phases. 

To fill this gap, (Giorgio et al., 2023) and (Piscopo et al., 2023) have recently proposed degradation 
processes (a Wiener and a gamma process, respectively) that can be used to describe degradation phenomena 
characterized by a bathtub-shaped degradation rate function.  

In (Giorgio et al., 2023) and (Piscopo et al., 2023) the utility and affordability of these models is shown by 
applying them to the MOSFETs data presented in (Lu et al., 1997). In these papers, the performances of the 
proposed models were evaluated in terms of their ability to fit the available data and predict the remaining useful 
life of the considered degrading units. Here, we propose a new gamma process with bathtub-shaped degradation 
rate and random effect inspired by the one suggested in (Piscopo et al., 2023) and apply it to maintenance 
optimization. 
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Specifically, here we adopt a customized version of the gamma process with random effect firstly proposed 
by (Lawless and Crowder, 2004), where, given the values of the random shape parameter, the gamma processes 
have a bathtub-shaped degradation rate. Then, we compute maintenance costs by using the maintenance policy 
proposed in (Esposito et al., 2022), which consists in performing a single inspection at a predetermined time and, 
based on its outcome, immediately replacing the unit or postponing its replacement to a future time. In case of 
postponement, the replacement time will be determined adaptively based on the measured degradation level. At 
this future replacement time, the unit will be replaced regardless of its degradation level, without any additional 
inspections. According to the failure threshold model, it is assumed that a unit fails when its degradation level 
passes an assigned failure threshold. 

When the degradation rate function is bathtub-shaped, the mean function has an inverse S-shaped behavior, 
which implies the presence of an inflection point where the degradation rate changes from decreasing to 
increasing. When the scale parameter of the gamma process is treated as a random variable (as we have assumed 
in this paper), degradation processes of different units evolve at different speeds. In particular, weak units (i.e., 
units whose degradation progresses relatively fast) tend to fail earlier with respect to strong ones (i.e., units 
whose degradation progresses relatively slow). Thus, understanding if a unit is weak or strong could be very 
useful information making effective maintenance decisions. 

In fact, the key idea behind the proposed maintenance policy is to exploit the inspection to timely assess if a 
unit is weak or strong and hence to define for it an ad hoc (unit-specific) replacement time which accounts for 
the rapidity with which its degradation evolves over time. Obviously, the objective is to timely carry out the 
replacement of the weak units and to postpone at later times the replacement of the stronger ones.  

The affordability of the approach is demonstrated by developing a realistic applicative example. Moreover, a 
short Monte Carlo study is also performed, by using simulated data generated under the model with bathtub-
shaped degradation rate function, to investigate the effect on maintenance costs of misspecifying the true model 
with a gamma process with random effect and power law age function. 

The rest of the paper is structured as follows. Section 2 illustrates the adopted gamma process with bathtub-
shaped degradation rate and random effect. Section 3 describes the adopted maintenance policy. Section 4 deals 
with the formulation of the long-run average maintenance cost rate. Section 5 presents the results of an example 
of application of the proposed approach. Section 6 gives some concluding remarks. 

2. The degradation process 

In this paper, the degradation process  is a non-homogeneous gamma process with age 
function: 

, (1) 

where the scale parameter  is assumed to vary from unit to unit according to a gamma random variable with 
scale parameter  and shape parameter . 
To remark that the scale parameter is random, hereinafter we will indicate it by  and its realization by . 

Under this setting, the probability density function (pdf) of the generic degradation increment  
, given the value  of the random scale parameter , and the pdf of  can be 

respectively expressed as: 

, (2) 

and: 

. (3) 

where  denotes the complete gamma function, and  
The resulting model is Markovian, hence (1)-(3), together with an initial condition (here ), fully 

define the model. 
Under this setting, the marginal pdf of  can be expressed as: 

, 

and the corresponding marginal cumulative distribution function (cdf) results in: 

, 

where: 
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is the regularized beta function and  is the beta function. In addition, the 
conditional pdf of the increment , given , can be formulated as: 

  (4) 

while the corresponding (conditional) cdf can be expressed as: 

. (5) 

As already mentioned above, we assume that a unit fails when its degradation level passes an assigned failure 
threshold, hereinafter indicated by . Thus, given that the hidden process  is monotone 
increasing, the useful life  of the unit (i.e., its time to failure): 

  
can be defined as the first and sole passage time of  to the failure threshold . 

In the rest of this section, we provide some results that involve the lifetime  which have been used to 
formulate the expression of the long-run average maintenance cost rate reported in Section 4. 
From the conditional cdf (5), it is possible to readily formulate the following conditional cdf of  given 

 in the cases where  : 

 

 (6) 

where  should be intended as a generic assigned reference time. Indeed, the first equality can be explained by 
observing that, since the process  is monotone increasing, the event  is equivalent to the 
event . 

Differently, in the case where  the conditional cdf of  given  can be expressed as in (7): 

 

. (7) 

Note that, for the sake of economy of notation, the cdfs in (6) and (7) have been indicated by using the same 
symbol. However, as it is explicitly specified in the text, the (6) should be used if and only if  and (7)  
if and only if . 
From (7), when , the conditional mean of , given , can be expressed as: 

 

Finally, from (6), when , given , the conditional mean of the variable  defined by 
the following transformation: 

  

can be computed as: 

3. The maintenance policy and the cost model 

In this paper, we consider a single unit whose degradation evolution can be described by the process 
presented in Section 2. The policy exploits the degradation information gathered by means of a single inspection 



   

performed at a predetermined time, which returns an exact measurement of the degradation level of the unit. This 
piece of information is then exploited to decide whether to immediately replace the unit or to postpone its 
replacement according to a condition-based rule. Moreover, it is assumed that: 

 inspections are instantaneous and non-destructive; 
 failure is not self-announcing. Hence, failed units continue to operate, albeit with reduced performances 

and/or additional costs; 
 both 

replacements are renewal points of a renewal process and the time between two successive replacements 
can be intended as the length of a cycle (i.e., the maintenance cycle). 

Table 1 summarizes the condition-based rule, where . 

Table 1. The condition-based rule. 

Measurement at  Decision 

 Immediate replacement 

 Postpone replacement to  

  
 Postpone replacement to  

 Postpone replacement to  

 
All the variables ,  and  should be intended as design  

parameters. The set of design parameters is denoted by , , and the optimal set 
,  should be determined by the policy based on economic considerations. 

As the parameter  is increased, the policy's effectiveness improves at the cost of escalating computational 
demands. This paper addresses the determination of the optimal value for  by iteratively employing an 
optimization procedure with progressively larger  values. The objective is to strike a balance between 
simplicity and efficacy. The optimal maintenance policy is characterized as the one that, for the chosen  value, 
minimizes the long-run average maintenance cost rate computed using the renewal/reward theorem. 

All the possible scenarios, together with the corresponding maintenance actions, maintenance costs, and 
cycle lengths, are listed in Table 2, where  denotes the state at ,  denotes the unit lifetime, and , 

, , , and  denote the logistic, inspection, preventive replacement, corrective replacement, and downtime 
cost rate, respectively. 
The logistic cost is supposed to be sustained each time a maintenance action is carried out, whereas the 
downtime cost is computed as the product of the fixed downtime cost rate  and the time spent in a failed state 
(the time elapsing between the failure of the units and its corrective replacement, i.e., the downtime). 

It is worth mentioning that, despite the adopted notation not highlighting it,  and  functionally 
depend on the vector of design parameters . Moreover, coherently with the assumption of not self-announcing 
failures, the lifetime  is always denoted with the capital letter to indicate that, even when  is known,  
should still be intended as a random variable. 

Table 2. Possible scenarios and corresponding maintenance costs. 

Scenario Maintenance action Cycle length  Maintenance cost  

 Preventive replacement at    

 Corrective replacement at    
and  Preventive replacement at    

and  Corrective replacement at    

    
and  Preventive replacement at    

and Corrective replacement at    

4. Formulation of the long-run average maintenance cost rate 

The long-run average maintenance cost rate is computed by using the renewal/reward theorem (e.g., see 
(Ross, 1983)) as: 

,  (8) 



   

where expectations have to be taken with respect to all the variables that are within the curly braces. The 
expected values included in (8) are not available in closed form but can be efficiently computed via (9) and (10). 
Specifically,  can be computed as: 

  

  

 

.  (9) 

Similarly,  can be computed as: 

  

  

  

  

, 

which, from Table 2 (and a few cumbersome but simple manipulations) becomes: 

  

  

  

.  (10) 

5. Example of application and comparative analysis 

5.1. Example of application 

In order to show the affordability of the proposed approach, in this section we present an example of 
application, developed by considering a realistic experimental scenario. The parameters of degradation and cost 
models are set to the values reported in Tables 3 and 4, respectively. Units are assumed to fail when their 
degradation level passes the threshold . 

Table 3. Parameters of the degradation model. 

      

      

Table 4. Parameters of the cost model. 

     

     

 
As already remarked above, the parameter  (i.e., the number of classes) of the adaptive maintenance model 

which, when increased, improves the performances of the policy at the 
cost of a heavier computational burden. Figure 1 highlights this situation. Indeed, it reports (in blue, solid line, 
left vertical axis) the optimal long-run average maintenance cost rate as a function of . The same figure also 
reports (in red, dashed line, right vertical axis), as a measure of the computational burden, the time (in seconds) 
needed to find the optimum on our machine of reference. 



   

Figure 1 shows that, as expected, the optimal cost decreases with . However, it plateaus after ,  
while the computational burden keeps increasing. For this reason, all subsequent analyses will be performed with  

 set to . 
 

 
Fig. 1. Optimal long-run average maintenance cost rate (blue solid line, left axis)  

and computational time (red dashed line, right axis) as a function of the number of classes . 

Table 5 reports the optimal values of the design parameters that minimize the long-run average maintenance 
cost rate in the case of  classes. The corresponding minimum long-run average maintenance cost rate is 
0.0386. These values are used to develop the comparative analyses reported in the next subsection. 

Table 5. Values of the optimal design parameters and corresponding optimal long-run average maintenance cost rate. 

           

           

           

           

 
Figure 2 shows, via a step function, the optimal value of the replacement time  as a function of the 

degradation level measured at , denoted by  in the case of  classes. This illustrates how the policy 
adaptively assigns high values of  to units which at  are barely degraded, and progressively smaller values 
as  increases. 

 

 
Fig. 2. Optimal replacement time as a function of the measured degradation level at  in the case of  classes. 



   

5.2. Comparative analysis 

In this section, we aim to assess the impact on the long-run average maintenance cost rate of neglecting the 
circumstance that the degradation rate is bathtub-shaped. For the comparison, we suppose that the proposed 
gamma process with random effect and bathtub-shaped degradation rate (which is assumed to be the true model) 
is misspecified with a gamma process with random effect where the age function has the classical power-law 
expression . 

Hereinafter, we will denote the model with bathtub-shaped degradation rate by M1 and the alternative model 
by M2. It is worth mentioning that M2 can be obtained as a special case of M1 when  is set to 0. Under both 
the models the scale parameter is assumed to be gamma distributed with pdf (3). 

To perform the analysis, we have generated 100 synthetic datasets under the model M1, with model 
parameters set to the values reported in Table 1. Each data set consists of 200 degradation measurements, 
obtained by observing the degradation level of 8 units at 25 different equally spaced inspection times, 

. 
Hence, we have fitted both the models M1 and M2 to each synthetic dataset by means of the Maximum 

Likelihood (ML) method, obtaining 200 , 100 estimates of the model M1 and 100 of the 
model M2. Subsequently, we have optimized the considered maintenance policy by using all the estimated 
models, obtaining 200 estimates of the optimal set of design parameters ,  . 

The likelihood is formulated as in (11): 

  (11) 

where  is the pdf in (4),  is the degradation level of the unit  at the 
measurement epoch ,  is its realization, , 

, , , and  is either the function in (1) or the power law 
function , depending on the model used to fit the data (i.e., either M1 or M2, respectively).  

The vector of model parameters is denoted by  and corresponds to  under the model 
M1 and to  under model M2. The ML estimate  is the value of  which maximizes (11), given 

. 
Finally, under each estimated model we have determined the value of the set of design parameters which 

minimizes maintenance costs computed as in (8). Obtained results have been used to compute the following 
indices: 

  (12) 

  (13) 

  (14) 

  (15) 

where: 
  is the true value of the long-run average maintenance cost rate (i.e., the one computed by using 

the true process); 
  is the true optimal value of the vector of design parameters  (i.e., the value of  that minimizes 

); 
  is the true minimum long-run average maintenance cost rate; 
  is the long-run average maintenance cost rate computed by using the model  with model 

parameters set at their MLEs obtained (under the model M) from the th 
that  can be intended as an estimate of ); 

  is the value of  that minimizes   can be intended as an 
estimate of ); 



   

  is the (estimated) minimum long-run average maintenance cost rate computed by using 
the model  with model parameters set at their MLEs obtained (under the model M) from the th 
dataset; 

  is the true long-run average maintenance cost rate obtained by setting  (this cost is 
evaluated by using the true process). 

The cost  differs from  because  is obtained by minimizing  instead of . 
 differs from  because model parameters are estimated. In addition, when , the model 

used to compute maintenance costs is not the right one. 
In other words, if we suppose that   is the true minimum,  
is the long-run average maintenance cost rate that is actually sustained when the design parameters of the policy 
are set to , while  is its estimate. 

The index  in (12) provides the mean of the relative difference between the long-run  
average maintenance cost rate  computed under the true model by setting the design parameter  
at the estimated optimal value  (determined under the estimated model ), and the true minimum  
long-run average maintenance cost rate , computed under the true model by setting the design 
parameters at the true optimal value . The index  in (13) is the (empirical) standard deviation  
of the relative difference  (i.e.,  indicates how, as the dataset varies, 

 deviates from its mean). 

The index  in (14) provides the mean of the relative difference between the long-run average 
maintenance cost rate  computed under the estimated model  by setting the design parameter at 
the estimated optimal value  (determined under the estimated model ), and the true long-run average 
maintenance cost , computed under the true model by setting design parameters at their estimated optimal 
value , determined under the estimated model M. The index  in (15) is the (empirical) standard 
deviation of the relative difference . 

Obtained results are reported in Table 6. 

Table 6. Results of the study 

     

     

     

 
The value of  of  in the first row of the table shows that adopting the estimated model  in 

place of the true model leads to a cost that, in mean, is  higher than the true optimum. On the other hand, 
the value of in the second row shows that adopting the estimated model  leads to a cost increase that, 
in mean, is  higher than the true optimum, with a cost increase that is almost twice the cost increase 
caused by using the estimated model . The values of  reported in the second column of Table 4 
shows that, under the considered setting, these percent increases vary sensibly from dataset to dataset (i.e., the 
ratio between the standard deviation of the relative difference  and its mean, 
under both models, is about ). 

Differently, the negative value of  reported in the first row of Table 6 indicates that the long-run 
average maintenance cost rate  computed under the estimated model , underestimates (in mean) 
the true long-run average maintenance cost rate by . Similarly, the positive value of  reported in 
the second row of Table 6 indicates that the long-run average maintenance cost rate  computed 
under the estimated model , overestimates (in mean) the true long-run average maintenance cost rate by 

. The values of  reported in the last column indicates that, under the considered setting, the 
percent difference  both under the model  and  vary from dataset to 
dataset a bit more than the percent difference  (i.e., the ratio between the standard 
deviation of the relative difference  and its mean is about is equal to  
in the case of the model M1 and to  in the case of the model M2). 



   

Conclusions 

In this paper, we have investigated the performances of a new gamma process with random effect and 
bathtub-shaped degradation rate function in maintenance optimization. We adopted a maintenance policy that 
consists in performing, at a predetermined (age-based) time, a single inspection aimed at measuring the 
degradation level of the unit and in using a condition-based rule to decide whether to immediately replace the 
unit or to postpone its replacement to a future time. The future replacement time is decided, unit by unit, based 
on the outcome of the inspection. The optimal maintenance policy is defined by minimizing the long-run average 
maintenance cost rate. A unit is considered failed when its degradation level passes an assigned failure threshold. 
Each replacement is assumed to restore the unit to an as good as new condition. Maintenance costs are computed 
by accounting for preventive replacement cost, corrective replacement cost, inspection cost, logistic cost, and 
downtime cost (which depends on the time spent in a failed state). The affordability of the approach is 
demonstrated via a realistic example of application. A Monte Carlo study is also performed, by using simulated 
data generated under the model with a bathtub-shaped degradation rate function, to investigate the impact on 
maintenance costs of fitting the data by using a gamma process with random effect where the age function has a 
classical power law shape. Obtained results show that neglecting the circumstance that the degradation rate is 
bathtub-shaped leads to, on average, higher maintenance costs. Moreover, it also leads to overestimating the true 
cost.  
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