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Abstract 

The Weibull distribution is frequently used due to its simplicity of interpretation and high flexibility in modeling technically 
complex failure behaviors. However, fitting a mixture of different failure behaviors poses challenges. In such cases, two 
distinct approaches, namely separation and mixed population methods, are commonly considered. Nevertheless, the use of 
these approaches increases the number of parameters, leading to decreased interpretability. As an alternative, the Sb Johnson 
distribution, with an additional fourth parameter, provides the capability to represent more complex distributions. However, 
the parameters of the Sb Johnson distribution are not interpretable in the manner of the three-parameter Weibull distribution. 
This paper presents a case study where the parameters of the Sb Johnson distribution are interpreted similarly to the Weibull 
distribution. To achieve this, three synthetic datasets with varying failure behaviors are examined, and a correlation analysis 
between the Sb Johnson and Weibull parameters is conducted. This study aims to provide insights into the interpretability 
and applicability of the Sb Johnson distribution as an alternative to the Weibull distribution in modeling complex failure 
behaviors. 
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1. Introduction 

The Weibull distribution model is often used to map and analyze the failure behavior of technically complex 
products. The distribution model according to Ernst Waloddi Weibull (1951) is characterized by advantageous 
flexibility and is also mathematically easy to handle. In principle, it is an exponential distribution. If the damage 
data from several failed products is available, a Weibull distribution model is adapted, so the failure behavior can 
be mapped and, for example, failure probabilities can be determined for certain values in relation to the mileage-
related variable. 

There are various forms of the Weibull distribution model (so-called "Weibull distribution family"); see Sec. 
3.2. One advantage of this distribution model is that parameters of the respective Weibull distribution models 
can be easily interpreted to characterize the failure behavior of the product after adjustment to the specific 
damage data available. The three-parameter Weibull distribution model with the parameters failure-free time t0 
(threshold: theoretical, first failure time), characteristic service life T (location parameter: characteristic life 
span) and shape parameter b (gradient), which characterizes the failure behavior, is at the center of the present 
work. As mentioned before, with a Weibull distribution model, failure behavior, usually caused by a damage 
mechanism, can be mapped very well. Fitting a mix of different failure behaviors is problematic. In this case, 
there are two different approaches as state of the art: 

 Separation of the data for the different damage mechanisms and the subsequent adaptation of different 
Weibull distribution models (algorithm for separating damage data cf. (Bracke and Haller, 2009), 

 Adaptation of a mixed-population approach: use of an alternative or competing model (Bracke, 2024). 
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The advantage of a mixed-population approach is that a model can be fitted for the entire product service life 
including all different damage mechanisms of the corresponding phases of failure behaviors. The disadvantage is 
that, in addition to the increased effort for the parameter fitting, the explicit parameter interpretation is difficult, 
as the number of parameters increases significantly. If, for example, the bathtub curve (failure rate (3); see 
Figure 1) were to be modelled using a mixed population approach, three Weibull distribution models would be 

required for the three phases (with respect to early failure behavior, random failure behavior, runtime-related 
failure behavior; see (7)). This would result in at least nine or ten parameters (depending on model) that would 
be difficult to interpret.  

An alternative is the Sb Johnson distribution model, which also is part of a distribution family. The focus in 
this paper is on the Sb Johnson distribution model, which is defined by (12) and comprises a total of four 
parameters: two shape parameters and two location parameters. 
Compared to the mixed population approach, fewer parameters would therefore have to be interpreted, but at the 
same time there is also the potential, that the failure behavior of a product can be mapped over several phases 
(i.e. failure modes). The result would be a model for mapping complex failure behaviors with a manageable set 
of parameters compared to the state-of-the-art mixed population approach. Furthermore, there would be no need 
to separate the data set. The difficulty lies in the interpretation of the parameter values of a Sb Johnson model 
adapted to a specific damage data set in relation to the known parameter interpretations in a Weibull distribution 
model. 

The Sb Johnson distribution model is currently only used in a few specialist disciplines to solve detailed 
problems; these include, for example, mapping the size distribution of raindrops (Cugerone and De Michele, 
2014) or exposure assessment for epidemiological studies (Flynn, 2006). The application and interpretation of 
the Sb Johnson model exists only in initial research works; cf. for example (Kudus et al, 1999) and (Slifker and 
Shapiro, 1980). 

The aim of the present research study is the application and interpretation of the Sb Johnson distribution 
model for mapping complex failure behaviors of technical products. 

2. Goal of research works 

The overall objective of this comparative study is to represent complex failure behaviors based on concrete 
damage data using an Sb Johnson distribution model. The following sub-goals are pursued: 

1) Adaptation of Sb Johnson distribution models to represent the elementary failure behaviors: early failure 
behavior, random failure behavior and failure behavior due to runtime,  

2) Comparative analysis with Weibull distribution models: Section wise/separated view versus mixed 
distribution approach, 

3) Correlation analyses between parameter sets of Sb Johnson distribution models and Weibull distribution 
models based on representative damage data sets, 

4) Interpretation of the parameterizations regarding the actual failure behavior, 
5) Discussion of the advantages and disadvantages of applying an Sb Johnson distribution model versus a 

Weibull distribution model. 

Fig. 1. Schematic visualization for mapping the failure behavior with failure rate (t) of a product for different phases related to the use phase. 



   

3. State of the art 

3.1. Failure root causes / Failure modes 

In principle, a distinction can be made between simple failure behaviors - usually based on one failure root 
cause - and complex failure behaviors - usually based on several failure root causes. Furthermore, a distinction is 
made between the elementary failure phases of early failure behavior, random failure behavior and failure 
behavior due to runtime (see Figure 1). Early failure behavior includes e.g. assembly errors and setting errors. 
Furthermore, sporadic control unit failures, for example, are assigned to the random failure behavior phase. 
Typical failure behaviors due to runtime are, for example, wear mechanisms, oil leaks and noise emissions. The 
causes of failure that lead to runtime-related failure behavior are the focus of this paper, see Section 5.1. 

3.2. Modeling of failure behavior 

In reliability engineering, failure behavior is modelled using distribution models. Especially the probability 
density function f(x) (cf. (1)), the cumulative density function or failure probability F(x) (cf. (2)) and the failure 
rate (x) (cf. (3)) are used to model the failure behavior of a runtime variable x (Bracke, 2024). 

 (1)  

 (2)  

 (3)  

The failure probability can be estimated by the cumulative frequency using median ranking, cf. (4). The 
failure probability F(x) of the value xi is calculated using a ration of the index value i to the sample size n 
(Bracke, 2024). 

 (4)  

A distribution model with wide use in reliability engineering is the Weibull distribution model (Weibull, 
1951). Two forms are distinguished: a two parameter (cf. (5)) and a three-parameter form (cf. (6)). The 
parameters, besides the life span variable x, are shape parameter (gradient) b, location parameter T (characteristic 
life span) and in case of the three-parameter Weibull distribution the failure-free time (threshold) t0. 

 (5)  

 (6)  

The advantage of the Weibull distribution is its flexibility regarding the modelled failure behavior. By 
variating parameter b, different failure rates can be described. A shape parameter b below 1 indicates an early 
failure behavior, while a shape parameter b about 1 gives a hint regarding a random failure. Runtime-related 
failure behaviors are often characterized by a shape parameter b above 1. If the failure rates of these three failure 
behaviors are plotted graphically, the bathtub curve results, cf. Figure 1. 
When simple distribution models can no longer adequately represent the failure behavior due to high complexity 
or the presence of multiple failure causalities, mixed population approaches are used. A distinction is made 
between alternative and competing models. In alternative models, different functions of the different or same 
function type are combined. Competing models are used when different damage causalities occur at the same 
time (cf. Bracke, 2024). 

In this paper, an alternative mixed population approach based on the two-parameter Weibull distribution is 
used, cf. (7). Here, three Weibull cumulative density functions with index i from one to three are combined using 
weights pi, which ranges from zero to one depending on the number of failures in the specific failure phase in 
relation to the total quantity. The fitting of the parameters and weights is made using Maximum Likelihood 
Estimation via the EM Algorithm (Dempster et al., 1977). 

 (7)  



   

4. The Johnson System 

The Johnson system is a family of distributions introduced by Norman Lloyd Johnson in 1949, that translate 
an observed, non-normal variate to one conforming to the standard normal distribution. Such distribution 
families are often used to summarize data in a function, as the different families can represent the data set in a 
flexible, adaptable way (Johnson, 1949). The three distribution families of the four-parametric Johnson system 
are represented by the form: With the selection of  as the standard normal variable and  
(x, ) the Johnson system represents as many forms as possible. In this way, the three distribution families can 
be modelled according to the following functions: 
 

             (8) 
 

             (9) 
 

          (10) 
 

If the parameter  is replaced by , so that  applies, the SL-distribution 
(L = lognormal) results from 1 in (8), which can therefore be modelled with three parameters. The 2 in (9) form 
represents a system bounded distribution (Sb), which is bounded with . SU with 3 in (10) enables an 
unbounded distribution representation. Thus, the lognormal curve represents a dividing line between the limited 
Sb region and the continuing SL distribution (Slifker and Shapiro, 1980). 

4.1. System bounded (Sb Johnson) 

The boundaries of the Sb Johnson are realized by two limit parameters , where  represents the left 
as a minimum and  the right limit as a maximum of the analyzed data. So  < x <  +  for the left and for the 
right side the condition  > 0 must be met. In addition, the following applies to the two shape parameters 

:  and  In general, an increase in the absolute value of  also increases the skewness, 
while an increase in  increases the kurtosis. The probability density function of the four-parameter model of the 
Sb Johnson random variable x is given by the form according to (11): 
 

        (11) 
 

where 0 < x < , > 0, < < , > 0, and + ln [x/( x)] = zx N(0,1). The cumulative distribution 
function shown in (12) (Kudus et al., 1999): 
 

          (12) 
 

To visualize different parameterizations of the probability density function (a) and the cumulative 
distribution function (b), different curves are shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2. Sb Johnson distribution characteristics with different parameter sets.  

(a) Probability density function; (b) Cumulative distribution function. 

a)                                                                                                                                                             b) 



   

4.2.  Applications of Sb Johnson 

In direct comparison to the Weibull distribution, various areas were identified in which the Sb Johnson 
distribution provides more precise results. For example, Kudus et al. described in 1999 that the system bounded 
distribution for diameter and height data is consistently better than the Weibull, beta, gamma and normal 
distributions due to the flexibility of the four parameters. Another application area is the modeling of offshore 
wind speeds. The Sb Johnson was here adapted to long-term time series of offshore wind farms that could be 
reliably predicted for various sea areas (Soukissian, 2013).  

According to Cugerone and De Michele 2014, the limiting boundary parameters  and  of the Sb Johnson 
can also be used for the statistical description of raindrop sizes, which are subjected to a physical size limit. In 
addition, the statistical moments are limited by the clear boundary values, which means that the two parameters 

and  can represent the limited distribution range in many variations. Thus, in the described study, eight data 
sets from eight different locations and a one-minute sequence were fitted with the Sb Johnson, gamma and 
lognormal curves. The parameters were all determined using the maximum likelihood estimation. The 
comparison between the three models showed that the Sb Johnson curve best represents the size of the raindrops 
(Cugerone and De Michele, 2014). 

However, in the examples mentioned it is also pointed out that problems often occur with Sb Johnson due to 
the limiting parameters when its parameters are determined using the maximum likelihood method. Due to the 
limitations, it is unlikely to converge to the end in every case, meaning that the fitting method has to be 
modified. To this end, J. F. Slifker and S. S. Shapiro developed in 1980 a corresponding strategy to 
systematically adapt the Sb Johnson to the required conditions so that it is more likely to converge.  

In general, it can be summarized that the Sb Johnson system theoretically has particular advantages over 
other distribution models, if the distribution to be adjusted has limiting boundary conditions. Due to the 
flexibility provided by the two boundary parameters and the two shaping parameters, these limited distributions 
are well represented. Nevertheless, practical implementation poses challenges, contributing to the limited use of 
the Johnson system (Flynn, 2006). 

4.3. Comparison Interpretation regarding Weibull and Sb Johnson 

Comparing the three-parameter Weibull distribution to the four-parameter Johnson Sb distribution, the 
following differences arise: The Weibull distribution is often employed due to its straightforward interpretability 
of parameters. However, it encounters limitations when dealing with more complex distribution behaviors 
because of its three-parameter representation. In such cases, the Weibull distribution is adapted to the complexity 
through a mixed population approach, but this complicates interpretability. In contrast to the three-parameter 
Weibull, the Sb Johnson has one additional parameter, theoretically allowing the representation of more complex 
curve shapes. Consequently, only one additional parameter needs to be determined and interpreted. 

A potentially comparable interpretation of parameters lies between the left threshold of Sb Johnson  and the 
threshold t0 of Weibull. While t0 describes the first failure of a damage mechanism, this can also be equated with 
the limiting property of the left boundary . The parameter b describes both the skewness and kurtosis of the 
distribution, which in the Sb Johnson distribution are influenced by the two parameters  and . In contrast to 
that, the characteristic lifespan T, also referred to as the expectancy value of the Weibull distribution, does not 
have comparable scaling properties to the right boundary  of the Sb Johnson. 

Overall, comparing the properties of the parameters proves to be challenging, and they should be analyzed 
explicitly for each specific application. For this reason, a case study is carried out in this article in order to 
compare the Johnson parameters with interpretable parameters of the Weibull distribution and to evaluate the 
applicability of the SB Johnson distribution to technically complex damage causalities. 

5. Case study 

The following section presents a case study to compare the parameters of the Sb Johnson distribution with 
those of the three-parameter Weibull distribution. First, various synthetically generated data sets are fitted and 
interpreted using the Sb Johnson distribution. In the second part, the three-parameter Weibull distribution is 
applied to the same data sets, followed by a comparison of the distribution parameters through a correlation 
analysis. 



   

5.1. Base of operations: Data set 

Three synthetic datasets are generated in total, each representing different failure behaviors. The diverse 
failure behaviors are synthesized based on the Weibull distribution. The first data set comprises the failure 
behavior over the entire product lifetime, characterized by early, random and runtime-related -failures. A 
segmentation of the data set according to (Bracke and Haller, 2009) shows the data structure according to an 
early failure behavior between a range of 1 and 135503 miles, while the random failures appear between 25091 
and 138677 miles. The failure times of the runtime-related failures are between 53607 and 214279 miles. The 
combination of all failure behaviors enables the representation of the entire bathtub curve. In contrast, the second 
data set is based on three runtime-related failures, with ranges of 48418  282881, 327636  868966 and 
1154177  2061610 thousand miles. In particular, to make the data basis for the correlation analysis more 
representative, a set of 30 runtime-related failure cases is considered in a third data set. The 30 synthesized data 
rows contain Weibull parameters with a slope b = 1.29  2.70; t0= approx. 30000 miles; T = 140000 with 30 
failure times each. 

5.2. Sb Johnson analyses: Fitting and interpretation 

In order to improve the interpretability of the Sb-Johnson parameters in the context of the failure 
mechanisms, the Sb-Johnson distribution is individually adapted to different failure mechanisms. The parameters 
are estimated using the standard maximum likelihood method from the scipy.stats library (Python) and fitted 
separately for the different failure mechanisms. As shown in Figure 3, the failure probability of the three failure 
segments of the first data set are shown on the left, while the corresponding failure rates are shown in the middle. 
On the right side, the three segments are merged and fitted together with a Sb Johnson distribution model (F(x)) 
and the corresponding cumulative frequency, cf. (4). All parameter results are listed in Table 1. 
 

 
Analyzing the failure probability, it becomes clear that the Sb Johnson characterizes the three failure 

mechanisms differently. The early failures are characterized by a significant gradient at the beginning and a 
stagnating plateau at the end. Similarly, the random failures show a plateau phase in the middle and rise again 
towards the end of the distribution range. In contrast to that, a steady increase in the default can be seen in the 
runtime- failures. The start and end points of the different distributions also show how the limiting parameters  
and  affect the distributions. A comparison of the values in Table 1 clearly shows that the left limit of the 
random failure distribution is almost identical to the start of the distribution. This is also shown by the failure 
rate of early and random failures shown in the center of Figure 3. Both the beginning and the end of the 
distribution are marked by exponentially increasing slopes. Nevertheless, when the Sb Johnson is applied to fit 
the diverse failure of the entire first data set, a swift escalation is evident initially. However, it fails to 
encapsulate the subsequent plateau phase within the mid-range of failures and the escalating number of failures 
towards the end without deviations. Hence, the assumption is posited that the Sb Johnson does not achieve 
complete convergence and, consequently, does not align more closely with the data trend. 

Similar to Figure 3, Figure 4 shows the second dataset failure probability on the left and the failure rate in the 
middle respectively. These represent the separately fitted failure behaviors of the second data set, which are 
summarized in Figure 4 on the right as one failure probability. The corresponding parameters are also shown in 
Table 1. 

The failure probability on the left side shows a similar behavior to the runtime-related failures of the first 
data set. All failure mechanisms show a steady increase and are clearly bounded by the limit parameters in the 
respective distribution range. While the first fitted the runtime failure behavior exhibits a comparatively steep 

 
Fig. 3. Sb Johnson distribution models of the first dataset, separate consideration of the failure modes.  

(a) Failure probability F(x); (b) Failure rate (x); (c) Failure probability F(x) entire first dataset. 

a)                                                        b)                                                           c) 



   

ascent, failure behavior models two and three show an exponential increase after a short initial phase. When 
fitting the three failure behaviors alongside a combined Sb Johnson distribution model (Figure 4 c), a broad trend 
is observed, similar to the first dataset. However, this method again fails to capture the specific failure curves, 
which leads to significant differences in the second plateau phase. 

 
Table 1. Parameters of the fitted Sb Johnson by dataset and segment. 

Dataset Segment Sample size n Shape  Shape  Minimum  Maximum  

1 1 50 1,264780765 0,387735012 -2,3768 137743,9891 

1 2 25 0,69126627 0,157921899 25091 113586,11 

1 3 90 461898845 1,350494256 36389,7982 214758,2731 

1 all segments 165 0,4410 0,439553895 126,0365 214971,4435 

2 1 19 3,10986622 1,85048746 7461,61574 702727,667 

2 2 41 -0,41221556 2,50482982 -71667,0542 1233554,7 

2 3 80 -0,6611816 1,95825391 759501,669 1558965,14 

2 all segments 140 -0,0664 0,52156445 38075,9702 2028611,949 

 
 
 
 
 
 
 

 

 
 
 

5.3.  Weibull analyses: Fitting and interpretation 

In this section, an analysis of the first and second dataset with Weibull distribution models is conducted to 
get a comparison base for the Sb Johnson interpretation. At first the different failure behaviors are analyzed 
individually using the segmented data sets. Secondly, a mixed population approach is applied for the two 
datasets considering all failure behaviors simultaneously. 
 
5.3.1 Separate consideration of the failure modes 

The first data set is separated into three parts: The first segment contains the early failure mode, the second 
contains the random failure mode and the third segment is characterized by the runtime-failure behavior. Three-
parameter Weibull distribution models are fitted for each segment. In Figure 5, the failure probability of the three 
sections is shown on the left side and the failure rate is shown on the right side. The corresponding parameters 
are documented in Table 2. 

 
Table 2. Parameters of the Weibull distribution models of the first dataset by segment. 

Segment Sample size n Shape b Scale T Threshold t0 

1 50 0.547 11,459 0 

2 25 1.043 60,704 23.323.60 

3 90 2.790 138,623 36.893.28 

 
The different characteristics of the three failure behaviors can be clearly seen. The curve of the failure 

probability of the early failure behavior increases significantly faster than the other failure probabilities. The 
failure rates of the three failure behaviors build the bathtub curve: The early failure behavior shows a decreasing 
failure rate, while the failure rate of the random failure behavior is nearly constant and the failure rate of the 
runtime-related failure behavior has an increasing trend. 

Fig. 4. Sb Johnson distribution models of the second dataset, separate consideration of the failure modes.  
(a) Failure probability F(x); (b) failure rate (x); (c) Failure probability F(x) entire second dataset. 

 

 a)                                                       b)                                                         c) 



   

 
In the second dataset, three different runtime-failure behaviors are separated. Three-parameter Weibull 

distribution models are fitted for each segment. In Figure 6, the failure probability of the three sections is shown 
on the left side and the failure rate is shown on the right side. The corresponding parameters are documented in 
Table 3.  

Table 3. Parameters of the Weibull distribution models of the second dataset by segment. 

Segment Sample size n Shape b Scale T Threshold t0 

1 20 1,908 138.976 31.115,62 

2 40 4,646 639.381 107.098,88 

3 80 5,571 1.735.631 764.163,49 

 
The impact of an increasing shape parameter b is clearly visible: The larger the shape parameter, the faster 

the failure probability increases and the flatter the failure rate becomes. 
 
5.3.2 Mixed population approach using Weibull analyses 
 

A mixed population approach is used to consider all failure behaviors in one distribution as a comprehensive 
model. No segmentation is necessary. The mixture distribution used in this paper is based on the two-parameter 
Weibull distribution and contains three parts, cf. (7). In Figure 7, the failure probability of the Weibull Mixture 
model is compared with a three-parameter Weibull distribution fitted over the whole dataset. In addition, the 
Cumulative frequency, cf. (4), is shown. The coefficient of determination is given as the squared spearman 

 
Fig. 5. Weibull distribution models of the first dataset, separate consideration of the failure modes.  

(a) Failure probability F(x); (b) Failure rate (x). 

Fig. 6. Weibull distribution models of the second dataset, separate consideration of the failure modes.  
(a) Failure probability F(x); (b) Failure rate (x). 

Fig. 7. Comparison of failure probabilities F(x) of Weibull Mixture model and three-parameter Weibull distribution  
with Cumulative frequency; with coefficient of determination R2. (a) First dataset; (b) Second dataset. 

a)                                                                    b) 

a)                                                                 b) 

a)                                                                 b) 



   

correlation coefficient of the Weibull model and the Cumulative frequency. The parameters of the fitted Weibull 
models are documented in Table 4. 

 
Table 4. Weibull Mixture parameters by Segment and three-parameter Weibull model fitted for the whole dataset. First and second dataset. 

Dataset Segment Percentage p Sample size n Shape b Scale T Threshold t0 

1 1 0.199 33 0.669 4,144 - 

1 2 0.126 21 2.307 29,209 - 

1 3 0.675 111 3.347 39,045 - 

1 all segments 1 165 0.923 82,428 0 

2 1 0.134 19 3.37 131,250 - 

2 2 0.293 41 5.28 633,396 - 

2 3 0.572 80 10.08 1,742,292 - 

2 all segments 1 140 1.433 1,226,236 46,405.79 

 
It can be clearly seen, that the Weibull Mixture distribution represents the complex failure behavior much 

better than the single three-parameter Weibull distribution for both datasets. The segments with their percentages 
are exactly found; this can be seen by comparing the parameters of the segments in Table 4 with the parameters 
in Tables 2 and 3. The breaks in the failure probabilities are accurately depicted by the mixture distribution 
model. 

5.4. Discussion: application possibilities and limitations 

In this section, the achieved results of the applied distribution models are discussed and compared based on 
the failure rate. Based on this discussion, the suitability of the Sb Johnson model for application to various 
failure mechanisms is evaluated. A correlation analysis is used for the interpretation of the determined Sb 
Johnson parameters in a direct comparison between Sb Johnson and the three parametric Weibull models. 

Figure 8 shows the fitted failure rates of Sb Johnson, Weibull Mixture and three-parametric Weibull for the 
entire data sets. For both data sets, there is no adequate fit of the purely three-parametric Weibull model. In 
contrast, due to the complexity of the failure probability already discussed, it can be assumed that the Weibull 
mixture distribution provides a very accurate representation of the failure behavior. Upon close examination of 
the fitted Sb Johnson model, the left-hand failure rate curve exhibits a notable resemblance to the bathtub curve. 
Nevertheless, an assessment of the corresponding failure probabilities reveals that while a broad overall trend is 
discernible, the distinct failure phases are only indicated with a certain deviation. The same occurs to the three 
wear mechanisms depicted on the right, constituting the second dataset. It can be concluded that the Sb Johnson 
model with four parameters is capable of approximately replicating the bathtub curve. However, this is 
associated with certain deviations. The transitions between different failure behaviors, which can be described 
with the Weibull mixture distribution model, are not reproducible with the Sb Johnson distribution model. It is 
assumed that the number of parameters is the limiting factor here and a lack of convergence also impairs the 
accuracy at significant points. 

 

 

 
Fig. 8. Comparison between failure rates of Sb Johnson, Weibull Mixture and three-parametric Weibull fitted to whole first (a); 

second dataset (b). 



   

To interpret the Sb Johnson parameters, a set of 30 run time failures (third dataset) is fitted by Sb Johnson as 
well as by three parametric Weibull distributions. The relation between the determined model parameters is 
analyzed with a correlation analysis according to Spearman. The corresponding correlation matrix can be found 
in Figure 9. 

 

 
 

Fig. 9. Spearman correlation between three-parametric Weibull and Sb Johnson with the third dataset. 
 

Overall, only very weak to weak correlations can be found between the model parameters of Weibull and Sb 
Johnson distribution. The one exception is the strong correlation of 0.75 between the Johnson parameter , which 
represents the left distribution limit, and the shape parameter t0 of the Weibull distribution. This confirms the 
previously assumed comparability of a distribution limit resulting from the first failure. Furthermore, there are no 
significant correlations between the two distribution models. While there are further stronger correlations 
between all Sb Johnson parameters among each other, the Weibull parameters show almost no correlation with 
each other. 

6. Summary 

In this comparative case study, the suitability of the Sb Johnson model for analyzing technically complex 
failure behaviors was thoroughly investigated. Multiple synthetic datasets were generated, and the Sb Johnson 
model was compared against fits of a three-parametric Weibull distribution. An essential aspect of this 
examination was the fact that the Sb Johnson model has one more parameter than the Weibull distribution, 
theoretically enabling its application to more complex relationships. 

The fits were analyzed not only for individual failure behaviors but also holistically, considering temporal 
dependencies between different failure behaviors. The results demonstrated that the Sb Johnson model was 
capable of approximating the general trend of failure rates, particularly in terms of the characteristic bathtub 
curve. However, deviations were also observed, particularly in representing specific failure phases with a degree 
of uncertainty. Therefore, additional studies involving only two temporally linked runtime-related failure 
behaviors may be of interest to align the parametric set ratio of the mixed Weibull distribution for comparability. 

Furthermore, a notable exception was the strong correlation between the left Johnson distribution limit 
parameter  and the shape parameter t0 of the Weibull distribution. In addition, no further correlations between 
the distributions were found using correlation analysis. 
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