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Abstract 

Seaweed aquaculture, particularly the cultivation of Saccharina latissima, presents a promising solution for protein and 
energy demands. Offshore locations for example in the North Sea have a huge potential for aquaculture, however, the harsh 
offshore conditions require a thorough understanding of structural loads. This study makes use of a copula-based Bayesian 
Network approach to assess wave and current induced loads on the mooring lines independent from the remaining seaweed 
cultivation structure located in the German North Sea. A three-dimensional hydrodynamic model is used to extract five 
variables to describe wave and current behaviour. A k-means clustering algorithm is used to account for different wave and 
current appearances. For each of these clusters, copula-based Bayesian networks (BN) are constructed, which represent the 
probabilistic dependence between the variables. Validation of these BN s is done using d-calibration score and in-sample 
simulations. From each BN, samples are drawn for the relevant variables. Based on these, the loads on the mooring lines due 
to wave and current flows are calculated via the Morison equation. Reasonable loads below 1.8 kN per cluster are obtained. 
Copula-based Bayesian Networks provide a robust approach for modelling uncertainty in extreme conditions in this study. 
Future research aims to refine load estimations, consider dynamics, and explore different dependence structures using vine-
copula models. 
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1. Introduction 

Seaweed aquaculture has emerged as a potential solution to address the demand for proteins and energy 
(Kerrison et al., 2015). Neither does it require freshwater, nor will it contribute to the land use competition. The 
species Saccharina latissima proved to be well suited (Geisler et al., 2018; Maar et al., 2023.) and is 
characterised by high growth rates and biomass yield potentials ( et al., 2021). Additionally, seaweed has 
the ability to extract nutrients and carbon from the seas (Yong et al., 2022, Boderskov et al., 2023). However, the 
competition at sea, especially close to the shore, is continuously increasing. Thus, aquaculture is moving further 
offshore. Especially the North Sea has a huge potential for aquaculture cultivation. Offshore cultivation 
structures, however, face a harsh environment. Despite the feasibility of offshore cultivation (Buck et al., 2008; 
Gagnon and Bergeron, 2017), further knowledge is needed to understand the loads on these structure in extreme 
events.  

Due to the harsh environment, significant impacts on the structure are expected, which leads to large forces 
acting on the structure, especially on the mooring lines. According to Stevens et al. (2007) and Feng et al. 
(2021), the biomass acts as the main drag element. Also, the angle of waves in relation to the structure 
orientation is crucial, while the upper buoy configuration can be neglected (Feng et al., 2021). In this study, a 
simplified approach is described to assess the loads on the mooring line due to wave and current impacts, 
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independent from the remaining structure. This study concentrates on the location of the FINO3 research 
platform in the German North Sea (see Section 2). An ecological assessment of cultivating the seaweed species 
Saccharina latissima has been previously conducted (Santjer et al., 2023). 

In order to assess the loads on the mooring lines, data is used from a three-dimensional hydrodynamical 
model for a duration of 5 years, which is further described in Section 2. Five variables are selected to calculate 
the forces due to wave and current velocities by using the Morison equation (see Section 3). 

To account for single components of the wave and current appearance at the selected location, a clustering 
algorithm is applied (see Section 3.1). For each of these clusters, a copula-based Bayesian Network (BN) is set-
up in order to build a multidimensional probability distribution (see Section 4). Copula models are used to 
describe the joint distribution between variables (Joe, 2015). For the BN s, gaussian copula models are used to 
build the dependence structure between variables. Two techniques are applied in Section 4.4 to validate the 
models. Finally, the exceedance probability curve of calculated loads is presented in Section 5. 

2. Case study 

In this study, a longline structure to cultivate the seaweed species Saccharina latissima at the location of the 
FINO3 research platform  is used as a case study. The platform is subjected to severe 
offshore conditions because of its exposed location (marked by a star in Figure 1 (a)). The water depth at this 
location is 23 m. Here, initial steps are taken to assess the loads on a structure. An overview of such a longline 
structure for the seaweed cultivation is given in Figure 1 (b) (Strothotte et al., 2021). The structure is 
characterised by several floating elements connected by ropes, where the main rope is called backbone, mooring 
lines and anchors (Plew et al., 2005; Stevens et al., 2008). The seaweed is cultivated between the single buoys in 
the middle part of the structure. The angle of the structure orientation is  (SW to NE). 

To assess the loads on the mooring lines caused by waves and currents, data of these variables at the location 
of interest is necessary. These loads are assessed on the mooring lines independent from the remaining structure 
and the growing biomass. Current velocities in x- and y-directions (  and , respectively) at a depth of 3 m 
(see Figure 1 (b)) are computed using the three-dimensional Dutch Continental Shelf Model  Flexible Mesh 
(3D DCSM-FM) (Zijl et al., 2023). This model makes use of the software D-Flow Flexible Mesh (D-Flow FM) 
(Deltares, 2023). The domain covered by the model can be seen in Figure 1 (a) 

 
 

    

Fig. 1. (a) Model domain of the 3D-DCSM FM model, showing the water depth in the area.  
The black star indicates the location of the FINO3 research platform, which is used for this case study.  

(b) Example set-up of a seaweed structure according to the one tested  
at the location of the FINO3 research platform (Strothotte et al., 2021). 

Building on this model, the third-generation spectral wave model SWAN (Simulating Waves Nearshore, 
(Booij et al., 1999)) is used. It solves shallow water processes and computes significant wave height , peak 
wave period  and the angle  of the waves. 



   

Data for the growth season of the species Saccharina latissima is extracted from both models,  September 
until May, for 5 consecutive years (2013 until 2017). The current velocity data has a resolution of 10 minutes, 
while the wave data of the SWAN model has an hourly resolution. 

3. Modelling approach 

In the Section above, the selected variables from the hydrodynamic model are mentioned, which are 
necessary to calculate the loads on the mooring lines due to wave and current impact. 

Next, the methodology for this paper is described. 
 The variable  is dominant as it is the main driver for particle velocities close to the surface. Therefore, 

daily maxima of  are selected together with the corresponding  and . Within a time window of 
8 hours, the maxima of  and  are selected. 

 Next, a clustering procedure is performed to identify environmental patterns (such a grouping on marine 
conditions according to different weather types was performed by Camus et al. (2019)) and to capture 
specific relations more accurately. 

 Different BN s per cluster are built. The structure differs per group and is based on the observed 
 

 The assessment of the fit of each BN is done using d- -Napoles et al, 2013; 
-Napoles et al., 2014) and in-sample simulations. For the in-sample simulations, half of the data 

points are used to build the BN, while the remaining data points are used for validation (see Section 4.6). 
 

the horizontal velocity of the surface waves is calculated. The in-line component of the flow velocity of 
both, waves and currents, with respect to the orientation of the structure is determined at a depth of 3 m, 
as this is the main growth depth of the seaweed species (see Figure 1 (b)). 

 Finally, the force on the mooring lines (marked in green in Figure 1 (b)) induced by wave and current 
flows is calculated via the Morison equation (see Section 3.4) and presented in the form of exceedance 
probabilities. The sampled flow velocities of both, waves and currents, are used to calculate the forces. 

3.1. Clustering 

Wave and current characteristics at the location of the FINO3 research platform in the offshore environment 
of the North Sea are compositions of several environmental components. To identify those patterns and to 
capture characteristics more accurately, groups are identified via the k-means++ algorithm (Arthur and 
Vassilvitskii, 2007). K-means is a popular unsupervised machine-learning technique which partitions data into 
groups. This algorithm maximises the distances between the centroids of each cluster while minimising the intra-
cluster variation. This intra-cluster variation is assessed via the Euclidean distance of each point to the closest 
centroid. The algorithm is initialised by randomly selecting a set of points within the data as centroids. Thus, the 
solution of the algorithm depends on such initial selection and may lead to spurious solutions. To prevent this, 
the k-means++ algorithm is used, which is an extension of the k-means algorithm where the initial centroids are 
selected as follows: 

 Choose initial centre  uniformly at random from the set of points . 
 Choose next centre , selecting  with probability , whereas  is the shortest 

distance from data point  to the closest centre. 
 Repeat step above until a total of  centres  is chosen. 
 For each , set the cluster  to be the set of points in  that are closer to  than they are to  

for all . 
 For each , set  to be the centre of mass of all points in : . 

 Repeat the two steps above until  no longer changes. 
Here, the implementation in Scikit-learn Python package is used (Pedregosa et al. 2011). 
The main hyperparameter of the k-means algorithm is the number of clusters, which is chosen here using the 

elbow method. For this, the k-means++ algorithm is applied several times for different numbers of clusters, k, 
and the sum of squared errors (SSE) is calculated. By increasing k, the SSE decreases. SSE can be plotted 
against the number of clusters. The point where the curve starts to bend is the so-called elbow point and 
indicated a reasonable trade-off between SSE and the number of clusters. 



   

3.2. Copula model 

The BN  used in this study are based on bivariate Gaussian copulas to describe the dependence between 
variables. Copulas are joint multivariate distributions with uniform marginal distributions in [0,1]. For the 
bivariate case, copulas are defined as 

, (1)  

where  is a joint distribution with marginals  and  and  is a copula in the unit square  
. Equation (1) is satisfied for all  (Joe, 2015). 

3.3. Copula-based Bayesian Networks 

Bayesian Networks are high-dimensional probability distributions composed by directed acyclic graphs 
(DAG). Each node in the graph represents a random variable, described using the empirical distribution function, 
while the arcs between the nodes describe the probabilistic dependence between the variables. The joint 
probability density over a set of variables is represented by defining conditional probability functions for each 
variable (child), accounting for its immediate preceding variables (parents) (Hanea et al., 2006). The Gaussian 
bivariate copula is used to describe the probabilistic dependence between variables as it presents computational 
advantages (Mendoza-Lugo et al., 2022). 

Bayesian Networks have for example been applied to predict injuries and drowning due to shore breaking 
waves and rip currents (de Korte et al., 2021). More specifically, copula-based Bayesian Networks have for 
example been applied to model marine conditions for different weather conditions (Camus et al., 2019) or to 
model extremes of wave and wind variables (Mares-Nasarre et al., 2023). 

In this study, the BN s are implemented using the Python library BANSHEE (see Paprotny et al. (2020) and 
Koot et al. (2023) and for the MATLAB implementation see Mendoza-Lugo and Morales- . 

3.4. Load calculation via Morison equation 

To estimate the in-line forces on the mooring lines caused by wave and current flow velocities, the Morison 
equation is used (Morison et al., 1950). The Morison equation is an empirical formula to assess loads on slender, 
cylindrical and fixed structures, by the influence of water particle velocity and acceleration. Thus, in this 
approach, it is assumed that the mooring lines are held fixed. To calculate the loads, the Morison equation 
consists of two terms: the drag force  and inertia force , which is the sum of the hydrodynamic mass force 
and Froude-Krylov force (  as 

, (2)  

where  = water density,  = diameter of the structure,  is the particle velocity in horizontal direction and  is 
the horizontal acceleration of the water particle.  and , inertia and drag coefficient, respectively, are 

e (2006), the 
inertia induced force  can be neglected, if the Keulegan-Carpenter number is greater than around 20 to 30, 
which is defined as 

, (3)  

where  is the maximum flow velocity and  is the period of the oscillatory flow, which is here set to the peak 
wave period. In this study, due to the small diameter of the ropes , the  number is in the order of  and 
thus, the force calculated via the Morison equation can be simplified to the drag force . 

The drag force is induced by the flow velocities and thus, the flow accelerations can be neglected. 

4. Building the probabilistic model 

4.1. Identifying and clustering extremes 

As described above in Section 3, 5 variables are selected, of which  is selected as dominant. Thus, daily 
maxima of  is sampled together with the concomitants of the other variables as the maximum within a time 
window of 3 hours. For the growth seasons between the years 2013 and 2017, this results in 1191 data points per 
variable. An overview of the data is shown in Figure 2. Applying the k-means++ clustering algorithm described 



   

in Section 3.1, 7 clusters are identified with a variable amount of data points between 53 and 326. In this Section, 
the results of the 6th cluster are presented as an example, as the amount of data points is comparably high 
(specifically 285 data points). Other clusters were quantified similarly to cluster 6. 

 

 
Fig. 2 Overview of daily extremes for surface waves ( , , ) and currents ( , ) of available data from the hydrodynamic models,  

where the different colours indicate the data belonging to the 7 different clusters. 

4.2. Empirical rank correlation matrix 

Spearman rank correlation coefficients ( ) are calculated (Spearman, 1987) for data within each cluster to 
assess the dependence between the selected variables. , where  and  represent the 
perfect (monotonic) positive and negative correlation, respectively. It is given by 

, (4)  

where  is the covariance of the ranked variables, and  and  are their standard 
deviations. Additionally, p-values are calculated to determine the significance of the observed correlations. Both, 
the rank correlation coefficients ( ) and the p-values help to identify the significant correlations between the 
variables in each cluster and, thus, set-up the DAG of the BN for that cluster. 

The rank correlation coefficients for the available data are presented in Table 1(a), whereas Table 1(b) 
represents the rank correlation coefficients for the 6th cluster exemplarily. 

Table 1. (a) Empirical rank correlation matrix for the total data set; (b) Empirical rank correlation matrix for the 6 th cluster. 

(a)      (b)     

           

 1.000 0.505 0.182 0.304 -0.130 1.000 0.516 0.010 -0.040 0.194 

  1.000 0.154 0.532 0.058  1.000 0.006 0.098 -0.043 

   1.000 0.189 -0.335   1.000 -0.162 0.015 

    1.000 -0.618    1.000 0.164 

     1.000     1.000 

 



   

4.3. Bayesian Network structure 

In this Section, the setup of the DAG of the BN per cluster is presented. For this, the underlying physics, but 
also the rank correlation coefficients and the corresponding p-values are considered. The rank correlation matrix 
of the individual BN should approximate the empirical rank correlation matrix per cluster. 

Depending on the direction of the surface waves and currents, the currents can influence the waves (see e.g. 
Rijnsdorp et al., 2023; Kumar and Hayatdavoodi, 2023). Consequently, for the DAGs for each BN,  has no 
parent nodes. If there is no significant correlation between  and ,  also does not have a parent node. Given 
that  is the main influence for the loads on the mooring lines,  does not have any child nodes. Based on 
these physical principles, the nodes are connected through arcs for significant correlations, until the rank 
correlation matrix of the BN approximates the empirical correlation matrix. Thus, arcs for pairs where the p-
value is slightly above 0.05 are added. For the first cluster, this approach results in two independent BN s. For 
sake of simplicity, the two BN s are connected by an arc between variables with the lowest p-value. 
Additionally, two out of the total 7 clusters have variables not connected to the DAG. 

Figure 3 shows the structure of the BN for the 6th cluster as an example.  indicates the rank correlation 
coefficients between two variables (see Table 1 (b)). Note however that the correlation coefficient of variable 
4 and 5 ( ) is not the same as the conditional rank correlation coefficient between these variables given that 
variable 1 is known ( ) (see Hanea et al. (2006) for further information).  

 

 
Fig. 3. Structure of the copula-based Bayesian Network for the 6th cluster. 

4.4. Model validation 

When building a BN, two hypotheses must be validated. Firstly, the dependence between selected variables is 
accurately described by the Gaussian copula assumption. Therefore, the Cram r-von Mises statistic (CvM) is 
applied (Genest et al., 2009) for each pair of variables. The CvM statistic is based on the sum of squared 
differences between the empirical and parametric joint cumulative distribution function given by the copula 
model. Next to the Gaussian copula, the Frank, Gumbel and Clayton copula are considered, of which the latter 
two are characterised by tail dependences. For most of the variable pairs , the Gaussian or Frank copula are 
found to be the best fit, being both symmetrical models (without tail dependence). For some pairs with low 
correlation, the Clayton or Gumbel copula models are selected as a better fit, but asymmetries are not found to be 
dominant when inspecting visually the dependence. 

Secondly, the d-calibration score - -Napoles et al., 2014) is employed to 
assess how well the DAG of the BN represents the dependence structure between variables. This score measures 
the  dissimilitude between two correlation matrices, where a score of 1 indicates identical matrices and the score 
approaches 0 if the matrices differ from each other elementwise. The d-calibration score is based on the 
Hellinger distance. For the proposed DAG for each cluster, the empirical rank correlation matrix is compared 
with the rank correlation matrix of the fully saturated BN, which represents the best possible model in which all 
random variables are connected to each other. The d-calibration scores are above 0.93, indicating that the 
suggested DAGs are suitable to represent the dependence structure. 

4.5. Performance assessment 

Here, the predictive power of the BN models is assessed through in-sample simulations. The results of the 
6th cluster are presented as an example (the structure is presented in Figure 3). 

To assess the model performance, the empirical data set is randomly split in half. The first half of the 
empirical data set is used to construct the BN. Note that the structure of the DAG was initially built based on the 
entire available dataset. The second half of the empirical data set is reserved for validation purposes. 

To perform the validation, conditional samples are drawn from the BN (predicted) and compared against the 
reserved half of the empirical dataset (measured). The results for observed  against the predicted 



   

 are shown in Figure 4. A good agreement can be seen; the BN slightly underestimates  and a trend 
of overestimating for  > 4.5 m can be observed. 

  

 
Fig. 4. Comparison between measured and estimated  using the BN model from the 6th cluster. 

The coefficient of determination,  is used to quantify the goodness of fit.  estimates the 
percentage of the variance explained by the model and is defined as 

, (5)  

where  are the observations,  the predictions and  the mean of observations. For ,  is determined as 
0.95. For the other variables of this cluster, the  scores are above 0.93, except for cy (0.85). Generally, it can 
be said that this BN (see Figure 3) is a satisfactory model for this cluster. 

5. Load analysis 

For each of the seven clusters, 10,000 random samples are drawn from the individual BN s. Based on these 
samples, the flow velocity of waves at 3 m below MSL is calculated via linear wave theory (see Section 3).  
For both waves and currents, the in-line component of the flow velocity in relation to the structure orientation  
is determined. Then, the Morison loads per unit length are calculated for the mooring rope, using equation (2).  
The diameter of the rope is set to  m,  and the water density  Using the 
calculated Morison loads, an exceedance curve is built, as shown in Figure 5. The results of cluster 2 and 4 
present significantly higher loads compared to the other clusters. The reason is that these clusters present  
higher  and  values in comparison with the other clusters, while the differences for the current velocities are  
minor. 

 

 
Fig. 5. Exceedance probability of the Morison force for each cluster. 



   

The calculated load per cluster induced by waves and currents on the mooring lines independent from the 
structure do not exceed 1.8 kN. A few studies do exist, which investigated the loads in the mooring lines and 
anchors of a similar structure for mussel cultivation. (Gagnon and Bergeron, 2017) observed a maximum load in 
the anchors of 0.6 kN for submerged mussel long-line in less harsh environment. (Cheng et al., 2020) measured 
and calculated loads in the mooring lines of a similar structure under tide flow of between 9 and 10 kN, while 
(Stevens et al., 2007) observed loads of 1.2 kN in the mooring lines induced by tide only. Thus, the loads 
calculated here seem to be reasonable. Note however that these studies indicate the measured loads in the 
mooring lines and anchors, while the present study gives a first estimate of the horizontal loads on the mooring 
lines, independent from the remaining structure, induced by wave and current flow. 

6. Conclusions 

In this study, forces on the mooring lines of a seaweed cultivation structure are probabilistically characterised. 
This was done by calculating the loads on the rope due to wave and current velocities using the Morison 
equation. As available data is limited, Bayesian Networks were built to obtain more data while accounting for 
the dependence structure present in observations. To capture the compositions of different wave and current 
components, the available data was divided into 7 clusters  by using the k-means++ algorithm. Research recently 
done in this direction indicates that a selection of wave and current flows parallel to the structure is most 
relevant. This conservative approach does not change the general approach described in this study. Here, BN
per cluster were built and validated via d-calibration score and in-sample performance assessment. It was found 
that copula-based BN s are a suitable technique for modelling the uncertainty of extremes in this case study and 
thus, can be used as input for the Morison equation to characterise the uncertainty of the loads. Regarding the 
load assessment, two clusters are found to present higher loads, due to higher  and , compared to the other 
clusters. Further investigation is needed whether clustering the empirical data into two groups is sufficient. The 
calculated loads seem reasonable in comparison with measured loads from literature for comparable structures. 
Future research will focus on improving the estimation of the loads and dynamics of the studied structure and 
analysing the influence of accounting tail dependence in the joint distribution by using vine-copula models.  
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