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Abstract 

This paper extends the results of (Malinowski, 2022), where a new non-standard method of estimating the shape (alpha) and 
scale (lambda) parameters of the Weibull distribution is proposed. The method uses n identical, repairable, mutually 
independent sample units and proceeds as follows: First, each item undergoes m 1 failures followed by minimal repairs and 
is discarded after the m-th failure. The resulting times-to-failure compose n independent samples, each of size m, where the 
times within one sample are neither independent nor identically distributed. Second, the obtained data are used to compute n 
MLE estimates of alpha and lambda, where the j-th pair of estimates are based on the times-to-failure of the j-th item, 
j = n. Third, the mean value of the above n estimates is computed for each parameter, to obtain more accurate estimates. 
The main results of (Malinowski, 2022) are the closed-form expressions for the considered MLE estimators and their biases. 
It should be noted here that the generally known MLE estimator of the shape parameter of the Weibull distribution, based on 
IID sampling, is obtained from an equation that cannot be solved analytically. However, the accuracy of the estimators 
obtained in (Malinowski, 2022) was not established, because no formulas for their variances could be found. This difficulty 
has been overcome in the present paper, where the respective formulas are derived and then used in the analysis of 
confidence intervals for alpha and lambda. 
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1. Introduction 

In (Malinowski, 2022) a new method of estimating the scale and shape parameters of the Weibull distribution 
is proposed. As generally known, this distribution has the following PDF: 

            (1) 

where  and  are the shape and scale parameters respectively. The issue of estimating these parameters using 
various estimation methods has been widely studied by multiple statisticians (Dodson, 2006; Chikr el-Mezouar, 
2010; Nielsen, 2011; Osarumwense and Rose, 2014; Almazah and Ismail, 2021). A recent survey of relevant 
literature can be found in (Jokiel-Rokita and ).The Weibull probabilistic model has diverse practical 
applications, as demonstrated, inter alia, in (Evans et al., 2019; Lei, 2008; Wu et al., 2021). Although the topic 
has been extensively researched, a new approach inspired by reliability theory is presented in this paper. It is a 
well-known fact that the time-to-failure (TTF) of many technical devices (or their components) is a Weibull 
distributed random variable. Therefore, in order to estimate its parameters, the standard method is to measure the 
IID times-to-failure of a number of non-repairable test items, and calculate the required estimates from the 
values of the random sample. Such a procedure is followed in (Alizadeh et al., 2015; Almazah and Ismail, 2021; 
Wu et al., 2021), to name a few. Sometimes, due to restrictions imposed on the sampling time, only censored 
data are available. Weibull estimation with such data is discussed in Alkutubi and Ali, 2011. Regardless whether 
the sample is complete or censored, the standard approach has one essential disadvantage  if failed objects are 
no longer usable then a large number of test items are needed in order to achieve high estimation accuracy, 
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which may lead to unacceptable cost. However, if the test items are repairable, then this cost can be reduced by 
applying a method presented further in this paper. 

The proposed method uses n identical, repairable, mutually independent sample units, each of which 
undergoes m 1 minimal repairs following its first m 1 failures (m 2) and is discarded after the m-th failure. The 
resulting times-to-failure can be arranged in a matrix [tij]i m; j n where tij is the i-th time-to-failure of the j-
th item, i.e. the time from the completion of its (i 1)-th minimal repair to the moment of its i-th failure. We 
assume that the 0-th repair precedes the start of operation of a new item. For each j n the sample times 
t1,j tm,j are realizations of the random variables T1 Tm, where Ti is the random i-th time-to-failure of a 
sample item (note the difference between a random variable and its realization which is a fixed value). In order 
not to complicate the notation, the index j will be omitted, thus the sample times-to-failure of any of n items will 
be denoted by t1 tm.  

Each parameter  or  is approximated by two estimators. The first one, named m-sample estimator, is a not-
so-accurate MLE based on a sample of m times-to-failure of one item, while the second one, named n m-sample 
estimator, is the mean value of the n IID realizations of the first estimator, thus ensuring much greater accuracy. 
The obtained estimators are biased and in (Malinowski, 2022) simple analytical formulas for their biases were 

 
As far as minimal repairs are concerned, there exist many reliability models with this type of repair. For 

various specific models and literature surveys see (Aven and Jensen, 2000; Tadj et al., 2011; Knopik and 
Migawa, 2019; Navarro et al., 2019; de Jonge and Scarf, 2020; Rebaiaia and Ait-Kadi, 2021; Liu and Wang, 
2022). A practical example of a minimal repair is given in Cha, 2005. 

The current paper is organized as follows. Section 2 summarizes the main results of (Malinowski, 2022),  
providing the basis for further argument. In Section 3 we formulate an auxiliary lemma used in Sections 4 and 5, 
where new closed-form exact expressions for the biases and variances of the estimators of  and   are found. 
Since the exact expressions derived in Sections 4 and 5 include the estimated parameter , the approximate 
expressions with  replaced by its estimator, suitable for numerical computations, are given in Section 6. In 
Section 7 the confidence intervals for the considered parameters are discussed, where the main result are the 
formulas for n guaranteeing that the interval of a given width contains the respective parameter with a given 
confidence level. Finally, Section 8 contains concluding remarks and prospects for future work.  

2.  A summary of the previous work 

The derivations carried out in (Malinowski 2022) led to the following likelihood function based on m 
successive times-to-failure of one item, i.e. on one m-sample: 

      (2) 

Here, f ( ) is the Weibull PDF given by (1), r( ) is the failure rate function, i.e. 

              (3) 

where F is the Weibull CDF, and si = t1 ti, i m. By equating the first derivatives of ln[f (m)] with 
respect to  and , the following m-sample estimators of these parameters, denoted as  and , have been 
obtained: 

          (4) 

Let us note that the expression for  contains , which can be substituted according to the left part of (4), 
yielding  as a function of m and s1 sm. For reasons of analytical tractability, explained in more detail in 
(Malinowski, 2022), it is more convenient to estimate 1/  and ln( ) rather than directly  and , the respective 
m-sample estimators being  and . From (4) we easily obtain the following formulas: 

            (5) 

and 

       (6) 

As mentioned earlier,  and , or rather 1/  and ln( ), are better approximated by n m-sample estimators than 
by m-sample ones. The former, denoted by  and , are defined as follows: 



   

             (7) 

            (8) 

where  and  are obtained from the successive times-to-failure of the j-th item by applying (4). Clearly, 

           (9) 

and, since the sequences of times-to-failure are independent between items, 

       (10) 

The biases of the m-sample estimators of 1/  and ln( ) are equal to  and , while 
the biases of the respective n m-sample ones are equal to  and . As follows from (9) 
and (10), n m-sample estimators have the same biases as m-sample ones, but are n times more accurate if the 
accuracy of an estimator is measured by its variance. 

A natural question arises  how good are the estimators defined by (5) - (8)? The answer requires the 
knowledge of the biases and variances of  and . In (Malinowski 2022) the following formulas were 
derived for the respective biases: 

          (11) 

and 

      (12) 

where  is the Euler-Mascheroni constant defined below 

         (13) 

Now it only remains to compute  to obtain the biases given by (11) and (12). According to (11), it holds 
that 

          (14) 

hence the bias of  is equal to (m ) 1. Still, we do not have the exact value of , as it is a parameter to be 
estimated. But, in view of (7) and the law of large numbers,  can be approximated by , i.e. the n m-
sample estimator of , where the accuracy of the approximation increases with n. Therefore, (11) with  
instead of  on the right-hand side can be used to compute the near-exact bias of . 

Similarly, we can express the bias of  as a function of  and m by substituting  with  
(m 1)(m )  1 in (12). It is somewhat unexpected that this bias does not depend on . In turn, the near-exact bias 
of  can be computed by substituting  with  in (12). 

Let us note that (11)  (13) imply that  and  are asymptotically unbiased as m . This fact is of 
little practical significance, because a sample item often becomes unusable after several repairs. 

The formulas for the biases of  and , i.e. (11) and (12), are the main result of (Malinowski, 2022). 
However, the accuracy of these estimators and their biases could not be assessed, because no closed-form 
expressions for the variances of  and  were found. This shortcoming is improved in the current paper, 
where such expressions are given. For this purpose, we prove that  is gamma distributed, hence its variance 
is given by a simple formula, then we find the cumulants of  and use a well-known fact that the variance of 
a random variable is equal to its second cumulant. Moreover, having obtained the variances, we analyze the 
confidence intervals for the parameters  and . 

3. An auxiliary lemma 

In the next two sections we will need the following auxiliary lemma: 
 

Lemma 1 
Let u1 um be arbitrary positive real numbers and vi = u1 ui, i m. Then 

       (15) 
 

Proof: 
Note that S1 < S2 <  < Sm. Hence, from (2) we have: 



   

  

    (16) 

For greater clarity, the differentials dsm ds1 are placed before the integrands. Since r(s) is the failure rate of the 
Weibull distribution, it holds that 

        (17) 

Based on (17), it can be proved by induction that 

  (18) 

Using the above equality in (16) we obtain: 

  

  

  

         (19) 

This completes the proof. The penultimate equality is a consequence of the fact that 

          (20) 

where f(x k is a positive number (not necessarily integer). 

4. Finding the distribution of , its expected value and variance 

Let the PDF of  be denoted as h(x), x 0. We will find h(x) by first computing and then inverting its 
Laplace transform. It holds that 

           (21) 

From (5) we have: 

          (22) 

The above expression has the form required by Lemma 1 with 

  

             (23) 

Equation (23) yields: 

  

              (24) 

Substituting the above values of v1 vm in (15), we obtain: 

       (25) 

The last equality in (25) is a consequence of the fact that (m)=(m 1)!. From the Laplace transform properties 
we know that 

        (26) 

Therefore 



   

         (27) 

If we put b=m  and n=m 2, then (27) converts to 

        (28) 

Equations (21), (25) and (28) yield the following expression for h(x), i.e. the PDF of : 

          (29) 

Hence,  is gamma distributed with m 1 and m  as the shape and scale parameters. Basic properties of the 
gamma distribution yield that  

               (30) 

Thus, the expected value and variance of  are simple functions of  and m. Let us note that the first equality 
in (30) is already known from the Introduction (see the statement under (14)).  

5. Computing the variance of  using its cumulants 

We will first compute the cumulant generating function (CGF) of , i.e. the function K (z) defined as 
follows: 

           (31) 

From (6) we obtain: 

         (32) 

The above expression has the form required by Lemma 1 with 

  

           (33) 

Equation (33) yields: 

  

               (34) 

Substituting the above values of v1 vm in (15), we obtain: 

       (35) 

In view of (31) and (35), the CGF of  is given by 

     (36) 

The successive cumulants of  are obtained by computing the respective derivatives of K (z) at z = 0. Let 
us note that z ln(m)/m  < 1 and m (z/ ) > 0 for z < , thus the expression on the right-hand side of (36) is 
correct for sufficiently small z, which guarantees the existence of these derivatives. In view of (36) we have: 

      (37) 

and 

     (38) 

where  is the digamma function, i.e. (z)=dln[ (z)]/dz and q 2.Equation (38) can easily be proved by 
induction. A simple consequence of (37) and (38) is that 



   

         (39) 

and 

       (40) 

where ,q denotes the q-th cumulant of , q  1. 
From (39) and (40) we obtain the following expressions for the bias and variance of : 

       (41) 

and 

       (42) 

It is easy to show that (41) is equivalent to (12). This is a consequence of (14) and the fact that  

          (43) 

where   is the Euler-Mascheroni constant (see (13)). In turn, the derivative of the digamma function present 
in (42), known as the trigamma function, fulfils the following equality: 

           (44) 

Equations (43) and (44), known from the special functions theory, allow to find close approximations of the 
expressions in square brackets in (41) and (42). 

6. Approximating the biases and variances of  and   

As follows from (30) and (41)  (44), the biases and variances of  and  are expressed as functions of 
m and .  Since  is a parameter to be estimated, its exact value is unknown. However,  is equal to 

 (see (14)), where  can be approximated by   defined in (7). In consequence, 
Equations (30), (41) and (42) adopt the following form: 

                (45) 

           (46) 

         (47) 

        (48) 

As shown in the introduction (see the paragraph below (10)), the biases of  and  are equal to those of  
and , hence their approximate values are the same as given in (45) and (47). In turn, according to (10), the 
approximate variances of  and  are obtained by dividing the right-hand sides of (46) and (48) by n. The same 
symbol denotes an estimator defined as a random variable and one defined as a fixed value, but its actual 
meaning is clear from the context. 

7. The accuracy of  and  in the context of confidence intervals 

The central limit theorem says that N(0,1) is the limit distribution of the random variable , 
where  is the sample mean of n independent realizations of a random variable X with finite expected value  
and variance 2. The limit is taken for n . It thus follows that for sufficiently large n we have: 

         (49) 

where  is the Gauss error function. Substituting  with   in (49) yields: 

     (50) 



   

Let  and +  be regarded as the limits of the confidence interval for , at the confidence level c. This means 
that the probabilities in (50) are equal to c (usually, the confidence level is denoted as 1 , where  is close to 
zero, but  denotes the shape parameter in this paper). In view of (50), the sample size for which the level c is 
reached is the smallest number n satisfying the following inequality: 

           (51) 

From (51) we readily obtain the following condition to be satisfied by n so that  is the confidence 
interval for , at the confidence level c: 

           (52) 

Given , c and , we can find n from the widely available tables of the Gauss error function. Clearly, it is 
essential to have  in order to find the minimum sample size ensuring that the desired confidence level is 
attained. It only takes to replace  in (52) with the approximate variance of  or  to obtain the 
minimum n guaranteeing that  or  is the confidence interval for  or 

 at the confidence level c. The required approximate variances are given by (46) and (48). However, as 
 or  differ from or , the half-width of the confidence interval placed in (52) and/or the 

interval bounds have to be properly modified if n is computed for the confidence interval for or . 
In view of (14) we have 

  

            (53) 

where  is given by (7). As implied by (53) and the preceding argument, if the interval  
 is to contain the parameter 1/  at the assumed confidence level c,  

then n should satisfy the following condition:  

     (54) 

The variance of  is approximated using (46). 
In turn, (12) yields: 

  

  

       (55) 

where  is given by (8) and 

         (56) 

For the definition of  see (13). It thus holds that  is the confidence 
interval for ln( ) at the confidence level c, if n satisfies the following condition: 

          (57) 

The variance of  should be approximated using (48). 

8. Concluding remarks  

This paper extends the results of (Malinowski, 2022) which presents a new approach to estimating the shape 
( ) and scale ( ) parameters of the Weibull distribution. According to this approach, each parameter is 
approximated by two estimators  the less accurate m-sample estimator based on a sequence of m times-to-
failure of one test item undergoing m 1 minimal repairs, and the more accurate n m-sample estimator obtained 
by taking the mean value of n realizations of the m-sample one. The m-sample estimators of  and , i.e.  and 

, are given by (4). However, due to technical reasons explained in (Malinowski, 2022), we instead consider the 
m-sample estimators of  and , i.e.  and  given by (5) and (6). Their biases can be computed 
from (11) and (12). The more accurate n m-sample estimators of  and , i.e.  and  given by (7) and 



   

(8), have the same biases as the m-sample ones, but their variances are n times smaller. 
Although the estimators  and  approximate  and , they can also be used to approximate  and , 

in view of the following equalities: 

             (58) 

           (59) 

where (m) is defined by (56). The above two formulas follow from (11) and (12) if we take into account that 

          (60) 

for sufficiently large n. 
The accuracy of the estimators presented in (Malinowski, 2022) could not be established there because of the 

current paper. They include the unknown, yet to be estimated parameter , which can be approximated by , 
thus yielding (46) and (48). These formulas can be used to find the sample size n for which the confidence 
interval of a given width contains the parameter  or  (and, in consequence,  or ) at a given 
confidence level. How to do it is demonstrated in Section 7. 

The future work should focus on analyzing the confidence intervals for the parameters  and  (let us note 
that in Section 7 the intervals for and  are considered). Also, the analytical results should be illustrated 
by numerical examples based on data obtained from practice. 
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