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Abstract 

In recent years, Maritime Autonomous Surface Ships (MASS) have been one of research hotspots in the field of shipping. 
However, fully autonomous ships are unlikely to be addressed quickly due to the restrictions of technology. Thus, focuses 
have on the remote control technology which applies to L2 and L3 class MASS according to IMO. Shared control that 
combines the advantages of human and machine is a classic scheme of remote control and has emerged as a key method for 
realizing remote MASS in practice. At present, there is much research about human-machine shared control in autonomous 
vehicle but less in autonomous ships. This paper proposes a shared control method based on fuzzy logic which is effective in 
dealing with the uncertainty and fuzziness of the factors in ship safety. A shared control framework is proposed to fuse the 
control commands from autonomous system (machine) and human operators (human). According to the guideline for remote 
control ships from major classification societies, the control permission should switch from the machine to the human when 
the encountering some specific scenarios which are sensitive area navigation scenario, nominal scenario without obstacles, 
and encountering scenario. After analysing these scenarios, three key factors are chosen as the input variables of fuzzy-logic 
based arbitrator, namely channel deviation, relative velocity, and distance to obstacles, and fuzzy rules are developed. Based 
on the rule, weight (human operator or machine) would change dynamically according to the current navigation environment. 
Besides, the method's characteristics of scenario superposition and combination contribute to its excellent adaptability.  
To demonstrate the proposed method, one simulation test which sets up with a controlled ship navigating along a specified 
route, avoiding unidentified obstacles and passing through bridge areas is employed. To avoid the obstacles, the controlled 
ship has to deviate from the channel. The weight of human operator changes under the combined action of relative velocity 
and channel deviation. When one of the two factors decreases and the others increase, the varying rate of weights slows 
down. And when controlled ship is about to navigate through the bridge, fuzzy-logic based arbitrator raise the driving weight 
of human operator to ensure the navigation safety. The result reveals the potential of the proposed method in enhancing the 
safety of the MASS with human in control loop. 
 
Keywords: MASS, human in loop, shared control, weight switching 

1. Introduction 

The development of the Maritime Autonomous Surface ships (MASS) becomes a hot technical trend as the 
research on autonomous control technologies has entered a new stage. International Maritime Organization 
(IMO) defined MASS as ships which can run independently with different degrees of interaction with human 
operators and divided MASS into four level: L1, L2, L3, and L4. MASS can be used for carrying out various 
tasks including cargo transportation, ocean monitoring, search and rescue operations, etc., while reducing 
operating costs (Kurt et al., 2022), environmental pollutions (Burmeister et al., 2014) and accidents/incidents 
( , 2016). Due to the uncertainties on the safety and reliability of the autonomous systems, the fully 
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autonomous surface ships are still on its way to maritime practices, while the MASS with human-in-the-loop is 
attracting more and more attention from both the academy and industry, specifically, L2 and L3 MASS.  

In L2 and L3, the machine is sharing the control of the ships with the human operators, in which human and 
machine can both gain benefit from each other. The machine would help the human operators to handle some 
simple scenarios, which reduces the workload of human; on the other hand, the human can handle the ship when 
the scenario is too complex for machine to find a feasible and rule-compliant solution. Thus, many studies are 
focusing on the cooperation and collaboration between the human and machine. Lang et al. (2023) propose a 
shared control method which offers control signal from autonomous arbitrator as the supplementary of human 
oper -based authority allocation strategy for shared 
control is designed by Li et al. (2019) and Xu et al. (2022) conduct a study about control measures and 
applications of shared control architecture (SCA) in aviation. Abundant research is carried on in the field of AV 
and aviation, however, it is still in its infancy in maritime shipping. 

To make the process of takeover smooth and safe, Abbink et al. (2012) propose a haptic shared control with 
fixed authority by introducing a new parameter named level of haptic authority (LoHA); A shared authority mod 
is employed to transfer 
driver (Saito, et al., 2018); Tian et al. (2020) take steering angles into shared control structure to ensure lateral 
path tracking effect and utilize fuzzy-logic to determine the authority allocation of steering angle. Clearly, the 
method of associating changes in shared control weights with influencing factors has been shown to achieve 
real-time authority switching in the field of vehicle autonomous driving, as evidenced by numerous studies. Few 
studies about dynamic shared control weight of ships have been done. And the existing researches about AV 
mainly consider the control weight arbitration scheme in terms of the functions that the controller needs to 
perform such as lane keeping and path tracking instead of scenarios, which is not suitable for maritime. 

Fuzzy logic with the feature of model-free is well-explored and widely used in many fields of research. In the 
maritime field, Das et al. (2022) utilize fuzzy logic to describe imprecise cost parameter in ship scheduling 
problem; A fuzzy logic-based approach is design to alert dangerous factors in bridge area (Wu B. et al., 2019; 
Bakdi et al., 2022) use fuzzy logic to encode COLREGs to make it executable for MASS. It shows that fuzzy 
logic has a strong vitality in reflecting the decision process of human, which is also suitable for arbitrating the 
control among human and machine.  

In brief, shared control scheme with fuzzy-logic is effective in human-machine collaboration and is a key 
method of developing MASSs, however, lack of  practice in autonomous ships. To fill the gap, this paper is 
concerned with the shared control method of L2 and L3 class MASSs. Considering the switching scenarios, this 
paper proposes a fuzzy-logic based shared control system framework to realize real-time integration of human-
machine decision-making. A knowledge and rule based fuzzy-logic shared control arbitrator for dynamic human-
machine driving weights throughout the navigation process has been designed. In brief, the main contributions 
are below: 

 the framework for switching controls between the machine and the human operators in RCC is 
proposed; 

 three types of scenarios are summarized as the typical driving weight switching scenarios; 
 a fuzzy-logic share control scheme is proposed, which dynamically assigns the weights of 

human/machine based on three key parameters, namely distance-to-target , channel deviation doff and 
relative velocity . 

The structure of the paper is addressed as follows: the introduction is presented in Section 1, followed by 
Section 2 that shows the framework of shared control system; Section 3 shows the design flow of the fuzzy-logic 
based arbitrator; The experiment design and analysis of simulation results are addressed in Section 4; Conclusion 
is discussed in Section 5. 

2. Methodology 

2.1. Assumptions 

There are many ways to achieve remote control function in MASS, and the role of human operators and 
machine are different from one to another. To simplify the problem, we consider a remote control system in 
MASS meeting the following assumptions: 

Assumption 1: Perfect communication conditions. The communication conditions between the controlled ship 
and the human operators from RCC is good. Thus, the command from the human do not have delay.   

Assumption 2: Autonomous tracking.The machine on board ship can track the defined trajectory. Thus, the 
ship could control the ship to handle some simple tasks without interventions from human operators.  



   

Assumption 3: Remote manual mode. The MASS is continuously controlled by human operators on shore 
RCC, i.e: the human operators would send commands on rudders and propellers to the ship.  

Assumption 4: Human always right. This paper assumes that the level of human intelligence surpasses that of 
intelligent navigation systems. Thus, the shared control system tends to hand over the authority to human when 
facing complex situations. 

2.2. Shared control architecture  

Direct shared control fuses command from human operator and autonomous navigation system (ANS) at the 
operation level, which may cause extra workload of human operator when human and machine sailing intentions 
are in consistent. Thus, this paper adopts an indirect shared control architecture that fuses control instructions 
from autonomous navigation system and human operator at decision-making layer instead of operational layer. 
By introducing a weight parameter  that changes timely as the sailing environment changing, the fuzzy-logic 
shared control weight arbitration determines fusion instruction by following the formla: 

 (1)  

where Us is the shared control command; Uh is human operator Ua is ANS  control 
command; and  is real-time driving weight. According to the value of , shared control can be divided into 
three stages: 

 fully autonomous control stage ( ); at this stage, MASSs fully follow the decision made by ANS; 
 pure human operator control stage ( ); at this stage, human operators gain complete control 

privileges and operate MASSs based on driving experience and sensor information; 
 shared control stage ( ); at this stage, human operators and ANSs work collaboratively to 

determine the fused command. 

2.3. Fuzzy-logic based shared control system framework 

To take full advantage of the operational capabilities of ANS and human operator and ensure the navigation 
safety, a fuzzy-logic based shared control system is introduced to coordinate control command as it is shown in 
Figure 1. Human and autonomous navigation system input control commands uh and ua to the shared control 
system based on their respective desired trajectories rh and  ra, respectively. Then, weight  which is determined 
by an embedded arbitrator based on fuzzy-logic is utilized to the shared control law to synthesize the shared 
command us. 

The proposed arbitrator is composed of three parts: a fuzzification interface, a inference engine, and a 
defuzzification interface. Fuzzification interface determines membership degrees of each actual input transmitted 
by the sensors from autonomous system and maps them to corresponding fuzzy input, which imitates the fuzzy 
judgement made by human at current situation. Inference engine utilizes an embedded fuzzy rule base to convert 
fuzzy inputs into fuzzy outputs which are transmitted to defuzzification interface and turn to actual outputs. The 
framework of the proposed fuzzy-logic based shared control system is shown in the following figure. 
 

 
Fig. 1. The architecture of the proposed remote system. 

3. Design of fuzzy-logic based arbitrator 

The fuzzy-logic is introduced to determine dynamic driving weight  which is the parametner fusing human 
and machine commands. To complete the design of the entire arbitrator, this paper defines several scenarios in 
which the control should change, and the characteristic parameters of each switching scenarios are defined as the 
actual input of the fuzzy-logic based arbitrator; subsequently, the fuzzification interface of the fuzzy arbitrator 



    

takes in the actual inputs and converts them into fuzzy inputs; the inference engine maps the fuzzy inputs to 
corresponding fuzzy outputs through a fuzzy rule base; finally, the defuzzification interface converts the fuzzy 
outputs into actual outputs. In order to make the shared control arbitrator universal in the application scenario, 
this paper chooses three characteristic parameters for representative scenarios and designs fuzzy rules 
individually.  

3.1. Definition of the switching scenarios and characteristic parameters 

In the whole takeover process, weight arbitrator is of great responsibility to assume control in dynamic traffic 
scenario accurately (SAE, 2014) and keep the whole process smoothly. That means the key of realizing dynamic 
shared control is not only detecting the switching scenario and timing, but also allowing the weight changing 
according to dynamic scenario. Generally speaking, there are two types of method for defining switching 
scenarios. One is data-based research methods such as machine learning and the other is rule-based research 
methods. However, lack of autonomous navigation data limits the usage of data-based method in MASS. Thus, 
this paper intends to define switching scenarios and select the characteristic parameters by referring to the 
existing  guildlines published by major classification societies. Some researchers (Zhang et al., 2023) aim to 
divide switching scenario according to relevant regulation on autonomous ships issued by major classification 
societies. Another vital part after determining switching scenario is identifying scenario feature and extracting 
characteristic parameters, which will impact control effect directly.  

Based on previous studies and regulations on autonomous ships, three types of key switching indicators based 
on three representative scenarios are summarized, namely sensitive area navigation scenario, nominal scenario 
without obstacles, and encountering scenario. 

(1) Distance-to-target 
In many autonomous ship related guidelines, the switching of control is encouraged when the ship is sailing 

into sensitive areas, such as bridge areas, docklands, narrow channel, etc. (BV, 2019), (CCS, 2023), (KR, 2022), 
(RS, 2020). Thus, a parameters distance-to-target l is introduced to help the ship switch the control from the 
machine to the human when the ship approaches to the sensitive area. Distance-to-target  is defined as: 

 (2)  

where  is the position vector of the controlled ship;  is the boundary of the sensitive areas. The parameters 
are demonstrated in Figure 2.  

(2) Channel deviation doff   
In normal cases, the controlled ship would follow the inputted path with certain control errors. As a result, the 

trajectory of the ship would bounded in an area around the path. However, in some special cases, the ship would 
deviate from the area by various factors and the control the ship would better swtich back to human operators. 
For instance, the environmental disturbance is larger than the expectation and exceeds the designed working 
conditions of the machine (BV, 2019; KR, 2022); the human operators decide to depart from the original path. 
To help the machine return its control back to human operators, another key factors deviation doff is introduced 
and formulated as: 

 (3)  

where  is the vector from waypoint A to waypoint B;  is the vector from waypoint A to controlled ship. 
The parameters are demonstrated in Figure 2. 

(3) Relative velocity vr  
Although there are many algorithms have been proposed to help ship collision avoidance, the human 

operators are still required to monitors the process of collision avoiandce since the collision avoidance systems 
have not been tested and the systems might provide controversial solutions that might be safe but rule-
incompliant. Thus, in this paper, approaching ratio to dangers is considered and relative velocity vr is used as key 
indicator, which can be  calculated by (4). In the future, as the machine intelligence improving, the machine 
might handle more complicated scenarios and the torelence to the dangers would be increased. In that case, we 
might need another indicators. 

 (4)  

where  and  represent the velocity vector of the controlled ship and the obstacle. The parameters are 
demonstrated in Figure 2. 

In summary, during navigation in obstacle-free regular areas, the channel deviation doff serves as an indicator 
for detecting abnormal ship navigation behavior and influences the weight. As the ship enters sensitive areas, 
changes in weight will be influenced by the distance-to-target l. When encountering obstacles, the relative 



   

velocity vr, representing the degree of danger, and the channel deviation, representing the effectiveness of 
collision avoidance measures, jointly influence the weight. In real navigaiton environment, the ship might 
encoutner the mentioned scenarios one-by-one, but in more general case, the ship might face to the mixed 
scenarios, such as Figure 2. In such case, the arbitrator computes driving weights individually for each of the 
three scenarios. In order to ensure navigational safety, the highest weight derived from these calculations is 
chosen as the current control weight and transmitted to the vessel. 

 

 
Fig. 2. Membership function graph of output weight. 

3.2. Selection of fuzzy membership functions 

Fuzzy membership functions are tools that transfer actual values to fuzzy values mutually following the lead 
of fuzzy rule base. Considering the different feature among three types of scenarios, this paper designs three sets 
of fuzzy membership functions and fuzzy rules. This section provides detailed explanations of the design process  
with formulas and diagrams for three scenarios. It is noteworthy that the parameter values of the fuzzy 
membership functions depend on the actual navigation environment and operator preferences. The parameter 
values presented in this section are for reference only, and adjustments can be made according to the actual 
situation in practical applications. Trapezoidal, triangular and gaussian fuzzy membership functions are 
employed for input and output variables, and formulated as: 

 (5)  

 (6)  

, (7)  

where n represents the fuzzy set corresponding to the input/output, fn is the computed fuzzy input/output value, x 
represents the actual input value of scene characteristic parameters or the fuzzy output value of weights, and a, b, 
c, etc., are parameters of the fuzzy membership functions, which vary depending on the specific navigation 
environment and driver preferences.  

In sensitive area navigation scenario, the input variable region considering the motion characteristic and 
operational characteristics of ships for distance-to-target l spans [0,500] meters, while the output variable weight 
ranges from [0,1]. The fuzzy sets for distance-to-target l and driving weight are categorized as {danger, normal, 
safe} and {S, N, D}, respectively, reflecting a descending order of security levels from high to low. Trapezoidal 
and triangular fuzzy membership functions expressed by (5) and (6) are employed for the input variable and 
gaussian functions expressed by (7) are employed for the output variable, which are shown in Figure 3. 

 



    

 
Fig. 3. (a) membership function of input l; (b) Membership function of output weight. 

In encountering scenario, the input variable region for channel deviation doff  spans [0,900] meters and relative 
speed vr spans [0,10] knots, while the output variable weight ranges from [0,1]. The fuzzy sets for channel 
deviation doff and relative speed vr are categorized as {slight, medium, severe} and {slow, medium_speed, fast}, 
respectively, reflecting a descending order of degrees from high to low. [S, MS, M, MD, D] is the fuzzy set for 
output weight. Trapezoidal, Gaussian and triangular fuzzy membership functions are employed for the input 
variables which is shown in Figure 4 (a) and Figure 4 (b), whereas triangular functions are adopted for the output 
variables, which is shown in Figure 4 (c). 

 

 
Fig. 4. (a) membership function of input doff ; (b)membership function of input vr;  (c) Membership function of output weight. 

In nominal scenario without obstacles, the input variable region for channel deviation  spans [0,900] 
meters, while the output variable weight ranges from [0,1]. The fuzzy sets for channel deviation doff  and weight 
are categorized as {slight, medium, severe} and {S, N, D}. Trapezoidal and triangular fuzzy membership are 
applied to input variable and output variable, which is shown in Figure 5. 

 

 
Fig. 5. (a) membership function of input doff; (b) Membership function of output weight. 

3.3. Establishment of the fuzzy rule base 

Fuzzy rules based on expert knowledge and experience is a collection of all mapping relationships between 
fuzzy inputs and fuzzy outputs. When autonomous ships gradually enter sensitive areas, the interaction between 
ships and the environment becomes more complex, resulting in increased operational difficulty. To ensure safe 
and efficient navigation decisions, it is necessary to increase the weight of human operator in these contexts. A 
ship trajectory that deviates from specific channel is regarded as abnormal trajectory. Therefore, when the degree 
of deviation keeps rising, it is necessary to increase the driving weight to draw the human o
anomalies. Fuzzy rule bases for sensitive area  scenario and nominal scenario are shown in Table 1. 



   

Table 1. Fuzzy rules table for sensitive area navigation scenario and nominal scenario without obstacles. 

Fuzzy input Weight  

Distance-to-target l Safe S 

Normal N 

Danger D 

Channel deviation  Slight S 

Medium N 

Severe D 

 
As for encountering scenario, nine rules are included. When vr is high and doff is small, it indicates that the 

current situation warrants the attention of human operator but is not extremely urgent. Therefore, the driving 
weight should increase at a relatively slow rate; when vr and doff  are at a high level simultaneously, it indicates 
that the behaviour of avoiding obstacles is performing, however, not efficient enough. Driving weight should be 
handed over to human operators quickly; when vr is slow while doff is large, collision measures work so the 
driving weight should increase at a slow rate to make sure the whole process safe; when vr is slow and doff is 
small, it means the current situation is generally safe, and the formulation of navigation decisions can primarily 
be handled by the autonomous navigation system. Fuzzy rule base for encountering scenario  is shown in Table 2. 

Table 2. Fuzzy rule base table for encountering scenario. 

Channel deviation  Relative speed vr 

Slow Medium_speed Fast 

Slight S MS M 

Medium MS M MD 

Severe M MD D 

3.4. Defuzzification 

Defuzzification is the last step which transfers fuzzy outputs into actual values with fuzzy membership 
functions. This paper utilizes centroid method which is depicted by formula: 

, (8)  

where  is the actual output value; is the fuzzy output value; is the fuzzy set; is the membership 
function of N set. 

The input-output relationships of fuzzy-logic arbitrators in three scenarios under their respective fuzzy rules 
are illustrated in Figure 6. Since sensitive area navigation scenario and nominal scenario without obstacles are 
single-input-single-output arbitrators, the relationship diagram is two-dimensional, while encountering scenario, 
being a two-input-single-output arbitrator, features a three-dimensional relationship diagram. 

 

 

Fig. 6. (a) Input / output surface diagram of sensitive area navigation scenario;  
(b) Input / output surface diagram of nominal scenario without obstacles;  

(c) input / output surface diagram of encountering scenario. 



    

4. Experiment design and results analysis 

4.1. Setup of the experiment 

The design rationale of this experiment is to examine the weight variations of the fuzzy-logic based arbitrator 
under different scenarios: normal ship navigation, encountering obstacles, deviating from the intended route, and 
traversing sensitive areas. The test is conducted on calm water surfaces with the vessel cruising at a speed of 5 
knots. In the experiment, a about 3000-meter route which is represented by green dashed line is established, with 
a moving obstacle of which the trajectory is denoted by the blue line in Figure 7 (a) traveling perpendicular to 
the channel. The trajectory of the controlled ship is represented by the red line in Figure 7 (a). And the weight 
variations resulting from changes in different characteristic parameters will be represented by points of different 
colors, which is shown in Figure 7 (b). 

4.2. Composite scenario experiment 

To verify that the weight changes receive the dual effcts of distance-to-target l, relative velocity  and 
channel deviation doff, the experiment simulates a scenario in which a controlled ship of which the trajectory is 
represented by red line encounters an obstacle while navigating in open waters and takes evasive action. After 
that, the controlled ship needs to traverse a sensitive area containing a bridge along the route.  

The simulation test can be divided into four phases of analysis. The simulated navigation process is shown in 
Figure 7 (a). In Phase 1, the controlled ship navigates along the predefined route without deviating from the 
channel. The autonomous navigation system primarily controls the driving authority, and the driving weight 
remains unchanged. The variation in driving weight during this phase is indicated by red dots. In Phase 2, the 
controlled ship maneuvers to avoid an obstracle, deviating from the predefined route. As it gradually deviates 
from the channel and experiences changes in relative velocity with the obstacle, the driving weight progressively 
increases and then decreases as the avoidance maneuver takes effect. The variation in driving weight during this 
phase is denoted by green dots. Phase 3 involves the gradual return of the controlled ship to the predefined route. 
During this process, the driving weight is influenced by the extent of deviation from the channel. When the 
deviation from the channel is significant, the arbitrator determines that the current decision is insufficiently 
effective, which makes arbitrator prompts an increase in the driving weight to let human operators take control. 
The variation in weight during this phase is represented by red dots. In Phase 4, the ship gradually approaches a 
sensitive area containing a bridge, represented by a black line. The region inside the black dashed line denotes 
the sensitive area. As the ship enters the sensitive area, the driving weight represented by blue dots begins to 
increase, reaching its peak when near the bridge, and eventually decreases as the ship moves away. The whole 
process is shown in Figure 7 (b). 

 

 

Fig. 7. (a) Trajectory of the controlled ship in conventional area with obstacles; (b) Graph of driving weights. 

4.3. Discussion 

As the experiment result indicates, the fuzzy-logic based arbitrator realizes the dynamic driving weight 
assignment due to the present motion state of ship when controlled ship successively sails into three 
representative scenarios. It is obvious that weight correlates negatively with distance-to-target l. As the 
controlled ship closes to the sensitive area, weight keeps growing and peaks. It is found that the changes in 
distance-to-target l can be reflected in the weight in time. The result also indicateds a simultaneous increase and 
decrease in channel deviation doff, suggesting that lateral displacement of the ship during operation is 
continuously monitored in real-time. Once it exceeds the normal value, the arbitrator promptly provides 
feedback in the form of driving weight to alert the human operator. It is observed that the changes in relative 



   

velocity and channel deviation are positively correlated with the weight. However, the asynchronous changes 
between the two alter the rate of weight change. 

 equal to 0, 
indicating that humans still maintain a lower level of weight, which is due to the characteristics of fuzzy logic. 
This is acceptable because it can enhance human attention during navigation to cope with unexpected situations.  

From the experiment, we can conclude the advantages of the proposed methods: 
 Real-time. Fuzzy-logic based arbitrator will assign the control of the ship to human and machine with 

weight that is determined by the motion state of the ship, which means the MASSs with fuzzy-logic 
based shared control method can achieve full-time and effective dynamic adjustment of driving weight 
distribution, facilitating real-time interaction for human-machine intelligent decision-making; 

 Well-adapted. This paper regards navigation as a process of scenario switching, occurring among three 
distinctive scenarios, namely sensitive area navigation scenario, nominal scenario without obstacles, and 
encountering scenario. Thus, the entire navigation process can be abstracted as the concatenation and 
blending of these three scenaios. 

Although the expected functions of the fuzzy-logic based arbitrator is verified by the result of experiment, 
there are still some problems to be solved reflected by the graph of weight variation: 

 Jumps in scenarios transitions. Although achieving smooth weight changes within the same scenario, 
there are still fluctuations in weight when switching between scenarios. This may be attributed to the 
different influencing factors between the preceding and subsequent moments. This issue may be 
addressed by implementing a variation controller during scenario transitions. Once the weight change 
between consecutive moments exceeds a certain threshold, the controller will enforce a gradual weight 
adjustment at a certain rate; 

 Lack of blending scenario test. In this experiment, the fuzzy rules play a role one by one, without 
considering the mixed scenario such as ship encountering obstacles in the sensitive area. Although the 
result has proved the effectiveness in encoutnering the mentioned scenarios one-by-one, experiments 
involving the simultaneous occurrence of all three scenes have not been conducted. 

To summarize, the experiment show the effectiveness of the fuzzy-logic based arbitrator. The trend of 
changes in characteristic parameters and weight aligns with navigation experience and knowledge, reflecting the 
real-time dynamic variation characteristic of the fuzzy-logic arbitrator. And the composite scenario experiment 
has preliminarily proved the good adaptability of this method. 

5. Conclusion 

Aiming at the gap of control methods for L2 and L3 class MASSs, a fuzzy-logic based arbitrator which 
determines control command fusion parameters  for shared control system is designed to achieve real-time 
weight change in navigation dynamic scenarios. This paper investigates a dynamic driving weight shared control 
method based on fuzzy logic, which provides a novel measure for real-time interaction of human-machine in 
decision-making. By referring to the relevant regulations issued by the classification societies, the navigation 
process is divided into three typical switching scenarios. Distance-to-target , channel deviation doff and relative 
speed vr are selected as the input of fuzzy arbitrator. After analysing the mechanism of these three factors 
affecting driving weight, fuzzy rule bases are designed. Finally, the effectiveness of the proposed shared control 
method is verified by the result of three experiments. 

According to the thought of switching scenario division, a composite experiment which contains bridge 
crossing scenario, channel deviation scenario and obstacle avoidance scenario is designed. The relationship 
between weights and three characteristic parameters, namely distance-to-target , channel deviation doff and 
relative velocity , is also demonstrated in the experiment. Specifically, weights increase with decreasing 
distance, increasing deviation, and increasing relative velocity. In the phase of encountering obstacle, weight is 
influenced by both channel deviation and relative velocity, which is particularly evident when one increases 
while the other decreases. In the phase of returning route, weight changes as the degree of channel deviation 
varies. In the phase of sensitive area navigation, the variation of weight associates with distance-to-target. The 
synchronization of weight with changes in these three characteristic parameters reflects the dynamic weight issue 
addressed in this study. 

There are many studies that need to be carried out in the follow-up. First, the weight change curve in this 
study is relatively smooth, however, it can be seen from the experimental result that there is still a need for 
continued optimization of the fuzzy-logic based arbitrator. Second, navigation is a continuous process. What 
kind of rules should be applied such as the order of the three fuzzy rules to combine the three generalized 



    

scenarios into a personalized navigation scenario still needs to be studied. Finally, the testing effect of the fuzzy 
logic-based arbiter on the shared control system will be the focus of this study. 
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