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Abstract 

International directives require the implementation of safety measures in machine tools to shield operators from hazards  
like ejected workpieces or tool fragments. A crucial component of these safety measures are polycarbonate vision  
panels, which allow operators to observe the machining process. The protective performance of these panels is assessed 
through impact tests using a standardized projectile, in which the so-called impact resistance is determined. The impact 
resistance is defined as the maximum kinetic projectile energy a safeguard is able to withstand during impact. A novel 
approach to determine the impact resistance is based on a logistic regression model. In the context of impact testing,  
this approach has so far proven effective only on a large data set of 104 impact tests. The present study demonstrates  
how to determine the impact resistance with a small data set of ten impact tests employing a logistic regression approach.  
The validity of this logistic model was confirmed through additional testing, demonstrating good agreement  
with experimental results. A further in-depth analysis using the logistic regression model revealed a significant  
increase in odds, highlighting the sensitivity of impact resistance to even minor variations in projectile energy. These findings 
suggest the need for a downward adjustment of the standard impact resistance values to maintain a stable safety  
level for polycarbonate vision panels. This study demonstrates the practical applicability of logistic regression in  
impact testing, achieving 93 % accuracy in predicting experimental outcomes while substantially reducing the  
number of required tests. It also outlines potential obstacles in implementation and provides strategies for addressing  
them. Moreover, this approach offers a more nuanced understanding of the structural behavior of polycarbonate vision  
panels under impact load and underscores the importance of incorporating odds into the evaluation of the protective 
performance. 
 
Keywords: safety of machine tools, polycarbonate, impact resistance, logistic regression 

1. Introduction 

The directive 2006/42/EC (Directive 2006) serves as a pivotal legal framework within the EUROPEAN  
UNION, establishing the foundation for rigorous safety standards in the design, manufacture and operation  
of machinery, particularly machine tools. By mandating comprehensive health and safety requirements,  
the directive not only protects machine operators, but also harmonizes safety standards across member  
states, thereby ensuring a uniform level of protection and a seamless cross-border market for machinery  
products , 2020). Central to achieving this uniformity and high level of safety are harmonized 
standards, such as ISO 14120 (ISO 14120) and ISO 23125 (ISO 23125). These standards provide detailed 
specifications and guidelines that align with the overarching objectives of the directive 2006/42/EC 
(Directive 2006). For the protection of machine tool operators against mechanical hazards ISO-standards 
(ISO 14120; ISO 23125) mandate the use of safeguards and define testing procedures to demonstrate  
an adequate level of safety. Those testing procedures involve impact tests with a standardized steel  
projectile, which are subsequently evaluated according to the aforementioned standards. According to 
ISO-standards (ISO 14120; ISO 23125) a safeguard passes an impact test if the damage pattern features  
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nothing more than bulging and/or incipient cracks visible only on the impact side of the safeguard. Any  
other damage pattern, e.g. a continuous crack from the impacted to the averted side of the safeguard  
or a full penetration, results in a failed test (ISO 14120; ISO 23125). The key parameter to quantify  

he so-called impact resistance (IR) Y, which is defined  
as maximum kinetic projectile energy Epr a safeguard is able to withstand. Given that the IR Y is a  
quantity that cannot be measured directly, it is generally derived from the analysis of an impact test  
series.  

A classical procedure for deriving the IR Y is the bisection method. This method starts by establishing  
a broad interval where the IR Y is presumed to exist, and then progressively narrows this range to a  
sufficiently small interval by additional impact tests (Landi et al., 2022; Uhlmann et al., 2021). A critical 
characteristic of the bisection method is its reliance on the two last impact tests used to define the narrow 
interval. Assessing whether the two last impact tests results are representative for the entire test series  
or whether they merely represent outliers, is impossible due to the limited number of tests. Addressing  
this limitation Uhlmann et al. (Uhlmann et al., 2017, 2022) employed a normal distribution to model  
an impact test series, which permits a reliable statistical evaluation of the results. However, fitting a  
normal distribution to the results of an impact test series has drawbacks of its own, as it requires extensive  
data preparation. According to Uhlmann et al. (Uhlmann et al., 2023) this process of data preparation can 
significantly influence the results of the normal distribution fitting. Thus, they suggested the use of a logistic 
regression model and demonstrated the same accuracy in predicting the IR Y for both distributions.  
A notable advantage of the logistic regression model is its capacity for direct application to impact test  
results without the need for preliminary data preparation, rendering it a more efficient and practical  
choice for modeling purposes (Uhlmann et al., 2023). However, a data set of npc = 104 impact tests was  
analyzed in their investigation. The number of impact tests npc is notably large, considering that a typical  
data set for assessing the IR Y with the bisection method generally includes 4  npc  6 impact tests (Landi et al., 
2022, Uhlmann et al., 2022).  

The present paper is motivated by the substantial discrepancy on number of impact tests npc, aiming  
to demonstrate the determination of IR Y using a total number of npc = 10 impact tests. Moreover, the  
accuracy of the logistic regression approach is validated through a goodness-of-fit (GOF) examination and 
additional impact tests. A subsequent analysis of odds O and odds rations Or provide further insights into the 
safety performance of the safeguards. 

2. Experimental and mathematical methods 

2.1. Impact test facility 

This study focuses on impact tests carried out on square Exolon GP clear 099 polycarbonate (PC)  
vision panels with a width of wpc = 500 mm and a thickness of tpc = 12 mm. PC is a common material  
for vision panels in machine tools, making the comprehension of its structural response under impact  
load crucially important , 2020). All impact tests were conducted at the Institute for Machine  
Tools and Factory Management (IWF) of TU Berlin, as illustrated in Figure 1(a). The velocity of the projectile  
vpr is controlled by the acceleration length la of the projectile and the pressure p in the pressure tank.  

 vpr -vision panel is measured by a light barrier.  
The impact test facility is equipped with two high-speed cameras to capture the impact. The PC-vision  
panel itself is fastened to a frame using screw clamps, with an overlapping width of wo = 25 mm, as  
depicted in Figure 1(b). This frame in turn is secured to the test sample mount using additional screw  
clamps. 

 



   

2.2 Logistic regression 

Logistic regression has evolved as a statistical tool for analyzing the relationship between a binary outcome 
variable Yd and an explanatory variable x. In logistic regression this relationship is described by a quantity called 
conditional mean E(Yd | x), which represents the expected outcome variable Yd given a certain value of the 
explanatory variable x (Hosmer et al., 2013). The logistic regression model reads as shown in (1).

Note, that the quantity (x) = E(Yd | x) has been introduced in (1) for the sake of simplifying the notation. In 
the logistic regression model, the explanatory variable x is weighted by unknown parameters 0 and 1, which in 
turn are associated to the mean  and the standard deviation (STD) s of the logistic regression model, see (1). 

 (1) 

Similar to linear regression these parameters must be estimated. Within the context of logistic regression this 
is generally accomplished by means of a likelihood estimation (Stoltzfus, 2011), which yields values that 
maximize the probability P of obtaining the observed data (Hosmer et al., 2013). Given a set of n independent 
observations, each defined by i = 1, 2,  n independent variables xi and binary outcome variables yi the 
maximum likelihood function l yields (2) (Hosmer et al., 2013). 

 (2) 

However, in logistic regression it is mathematical beneficial to work with a log-likelihood function L, instead 
of the maximum likelihood function l (Hosmer et al., 2013), which is defined as shown in (3). 

 (3) 

The solution of (3) is typically computed numerically (Hosmer et al., 2013) and was performed in case of the 
present study using the PYTHON module STATSMODELS.  

3. Logistic regression for impact tests 

3.1. Experimental design 

The successful application of logistic regression requires a well-planned experimental design, in particular 
when dealing with limited data sets. The primary objective of this study is to determine the IR Y using a small 

 
Fig. 1. Impact test facility: (a) Isometric view of entire test facility; (b) Detailed view of the PC-vision panels mounting conditions. 
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data set of npc = 10 impact tests. A major challenge posed by such compact data sets is ensuring that each test 
adds significant value to the logistic regression model. Logistic regression as being a predictive analysis requires 
a conclusive and representative range of data to adequately model the relationship between the explanatory 
variable x and the outcome variable Yd. Gathering representative data from impact tests is especially demanding, 
since it requires approximative knowledge about the IR Y prior to the impact tests. An inadequately chosen 
interval for the explanatory variable x could result in an over-representation of one outcome in the outcome 
variable Yd. For impact tests explanatory variable x represents the kinetic projectile energy Epr, whereas the 
outcome variable Yd describes the probability of observing a failed impact tests P according to ISO 23125 
(ISO 23125). If, for instance, the npc = 10 tests are placed in an interval of projectile energies Epr where only 
failed impact tests are observed, little information can be drawn from these test results and more importantly, this 
data cannot be represented by a logistic regression model. Thus, the interval of projectile energies Epr must 
feature a balanced quantity of both passed and failed impact tests.  

Equally important is the distribution of individual impact tests within the selected interval. A well-distributed 
set of tests throughout the interval ensures a more comprehensive understanding of the IR Y across different 
scenarios. In contrast, a poorly distributed set of tests may lead to numerical issues, like complete separation. 
Generally speaking complete separation describes the case in which the outcome variables Y can be divided by a 
vector  or in case of only one explanatory variable x  a line  and only one of the two possible outcomes can 
be found on each side of this line (Albert et al., 1984). As a consequence, the maximum likelihood estimator 
become unbiased, resulting in infinite parameter estimates, or in other words unreliable results (Mansournia et 
al., 2018). An illustration of a complete separation for impact tests is shown in Figure 2 alongside with a logistic 
regression model of well-distributed impact test data. Note, that the experimental results are categorized as either 
zero or one, whereas one represents a failed impact test according to ISO-standards (ISO 23125) and vice versa. 

On this account, it can be concluded that the success of logistic regression analysis applied to impact tests 
heavily depends on two key factors: 

 a well-suited interval of projectile energies Ekin that consists of a balanced quantity of passed and failed 
impact tests as well as 

 well-distributed impact test results within the interval, to avoid complete separation.  
Meeting both conditions is challenging without prior knowledge of the impact test outcome. However, the 

ballistic limit velocity (BLV) vbl serve as estimate for the upper limit of this interval. The BLV vbl is another 
quantitative metric for the safety performance of safeguards based on the work of Recht and Ipson (Recht et al., 
1963). It is defined as minimum projectile velocity vpr that is required to completely perforate a safeguard and 
emerge from it with a projectile velocity of vpr = 0 m/s (Ben-Dor et al., 2006). Hence, safeguards subjected to an 
impact with BLV vbl feature by definition damage patterns considered as failed test according to ISO-standards 
(ISO 23125). Since the BLV vbl and its corresponding ballistic limit projectile energy Epr,bl represents the 
minimum projectile energy Epr required to obtain a complete perforation, both quantities provide a reasonable 
estimate for the upper interval limit. 

 
Fig. 2. Example illustrating the effect of complete separation;  

(a) logistic regression model; (b) detailed presentation of the test data distribution. 



   

In addition to estimating the upper interval limit, it is equally important to approximate the lower interval 
limit. In this context, the studies conducted by Landi et al. (Landi et al., 2022) and Uhlmann et al. (Uhlmann et 
al., 2021) provide essential insight. Their investigation into the relationship between IR Y and the ballistic limit 
projectile velocity Epr,bl resulted in the derivation of an approximation formula, in which a so-called reduction 
coefficient cR,E was introduced that establishes a link between the IR Y and ballistic limit projectile 
velocity Epr,bl, as shown in (4). 

 (4) 

Both investigations found slightly different values for the reduction coefficient cR,E, but observed a strong 
dependence on the dimensions of the impacted safeguard. Since Uhlmann et al. (Uhlmann et al., 2021) utilized 
PC-vision panel dimensions identical to those in the present study, their results are adopted as a basis for 
approximating the lower interval limit. The interval for the impact tests is defined as shown in (5). 

6.2 kJ  Epr  7.6 kJ (5) 

To avoid accuracy problems due to complete separation, the majority of the impact tests were performed in 
the middle of the interval, with fewer tests at the limits. Figure 3 and Table 1 show the impact test results 
together with the logistic regression model and its corresponding model parameters. 

Table 1. Results of the logistic regression. 

Parameter of logistic regression model value 

Mean  in kJ 6.6 

STD s in kJ  

An examination of the data presented in Figure 3 reveals that the key criteria essential for a successful 
application of the logistic regression were fulfilled in the test series. The results exhibit a balance of both passed 
and failed impact tests. More importantly, the concentration of impact tests towards the middle of the test 
interval effectively prevented the occurrence of complete separation on the logistic regression model. 
Nevertheless, the novelty of this approach in the 
context of impact tests and the limited size of the data set the logistic regression model is based on. 

 
3.2. Model validation 

The validation of  For a 
small data set of npc = 10 impact tests the pseudo R2-value according to McFadden (McFadden, 1977) is an 
appropriate choice. It should be noted, that the pseudo R2-value works differently than the similar coefficient of 
determination in linear regression . In logistic regression values ranging from 0.2  R2  0.4 indicate a good 

 
Fig. 3. Experimental impact test results and logistic regression model. 



   

model fit (McFadden, 1977). With a pseudo R2-value of R2 = 0.47 the present model fits the data very well. 
Although, the pseudo R2-value offers a statistical 
data, it does not evaluate the physical plausibility of these predictions. 

carried out across three distinct ranges. These ranges were defined to anticipate a low, medium and high 
probability of encountering a failed impact test P, as predicted by the logistic regression model. For each range 
npc,v = 5 additional impact tests were conducted. To provide a quantitative basis for evaluating the accuracy of 
the logistic regression model, the number of anticipated failed impact tests nfail,e was calculated, according to (6).  

 (6)   

Table 2 shows the detailed description of the expected probabilities P, the corresponding projectile 
energies Epr and the expected number nfail,e of failed impact tests. Note, that the results for the expected 
number nfail,e has been rounded to the nearest whole number. 

Table 2. Specifications of ranges defined for logistic regression model validation. 

Property Range I Range II Range III 

Expected probability  
of failed impact tests P 0.01 %  P  5.00 % 30.00 %  P  70.00 % 95.00 %  P  99.99 %

Projectile energy Epr 5.97 kJ  Epr  6.43 kJ 6.59 kJ  Epr  6.71 kJ 6.86 kJ  Epr  7.67 kJ
Expected number nfail  
of failed impact tests nfail,e < 1 2  nfail,e  nfail,e  5

 
The results of the additional impact tests are shown in Figure 4. 

All additional impact tests for validation purposes were placed successfully in the designated range. When 
comparing the expected number of failed impact tests nfail,e from Table 2 with the actual validation results in 
Figure 4 an overall good accuracy of the logistic regression model can be observed. However, for Range I 
nfail,e < 1 failed impact tests were expected, when nfail = 1 failed impact tests were in fact observed in the tests. 
This allows for two possible explanations: 

1. for Range I are inaccurate or 
2. The model is accurate and the unexpected observation of nfail = 1 impact tests is merely a consequence of 

the fact, that the probability P of finding such a behavior is low, but not zero. 
 II and 

III precisely. With 2  nfail,e  4 predicted and nfail = 3 observed failed impact tests in Range II, the results 
demonstrate precisely the behavior anticipated. The same is true for Range III, where the number of 
experimentally observed failed impact tests nfail matches perfectly the prediction of nfail,e  5 failed tests. Given 
the symmetry of the logistic regression model around the mean  at a probability of P = 0.5, the likelihood of the 
model to accurately predict outcomes for Ranges II and III while exhibiting reduced precision on Range I is 

 
Fig. 4. Experimental impact test results alongside validation and logistic regression model. 



   

minimal. However, such a scenario cannot be conclusively dismissed without further testing. Despite the 
observed discrepancies in predictive accuracy for Range I, the overall alignment of the model s predictions with 
experimental outcomes in Ranges II and III underscores its robust predictive capabilities. Consequently, the 
model is considered valid for modelling the impact test series. Nevertheless, the two failed tests in Range I 
highlight the stochastic character of a PC-vision panels response under impact load. 

4. Analysis of safety performance 

With the demonstrated capabilities of the model, it is now feasible to analyze the safety performance of the 
investigated PC-vision panel. This analysis includes utilizing the logistic regression model to derive a 
probabilistic value for the IR Y, whereas the IR Y in context of a logistic regression is defined according to (7). 

 (7) 

Besides an evaluation of the mere safety performance the application of odds O and odds ration Or allow for 
an in-depth understanding of the evolving probabilities associated with observing failed impact tests P. The 
quantity in (8) is called odds O (Montgomery et al., 2014). 

 (8) 

In general, the odds O allows to quantify the strength of the association between the explanatory variable x 
and the outcome variable Yd. In terms of impact tests, they can be interpreted as increase in the probability of 
observing a failed impact test P. For instance, if the odds are O = 2 for a specific projectile energy Epr, this 
indicates that observing a failed impact test is twice as probable as seeing a passed impact test at that particular 
projectile energy Epr. Figure 5 shows the odds O for the PC-vision panels investigated in this study. 

From examining Figure 5 the pronounced exponential increase off odds O for a growing projectile energy Epr 
is evident. This is also illustrated by the odds ratio, defined as . The current logistic regression model 
has an odds ratio of - , or expressed in joules - . This means that with every Epr = 1 J 
increase in projectile energy the odds O of a failed impact test increase by a factor of 1.01, which underscores 
the significant sensitivity of impact test results to even minor variations in projectile energy Epr. 

The analysis of odds O and odds ratios Or within the logistic regression framework enables a critical 
re-evaluation of the current procedure for assessing the safety performance of PC-vision panels. To date, the 
evaluation of PC-  entirely on their IR Y. However, the 
odds O found in this study suggest that while IR Y is indeed safe in probabilistic terms, it simultaneously is an 

 

 
Fig. 5. Odds O of observing a failed impact test. 



   

Notably, a slight increase in the projectile energy Epr by only 5 % above the IR of Y = 6.3 kJ already increases 
the probability of a failed impact test to P = 42.4 %. This significant susceptibility to slight variations in 
projectile energy Epr strongly suggests the need for a reassessment of the IR Y threshold. In light of these 
findings, and considering the implications of the odds O, it appears prudent to further reduce the IR Y to a level 
where minor fluctuations do not precipitate hazardous outcomes. Although the precise reduction factor for the 
IR Y of PC-vision panels may depend on their specific dimensions and remains yet to be determined, the 
findings of this study indicate that a 5 % decrease in projectile energy Epr consistently leads to a safer threshold. 
A 5 % reduction of IR Y thus yields a compensated IR of Yc = 5.9 kJ. This observation suggests the necessity of 
incorporating odds O in the determination of IR Y, to ensure enhanced safety. 

5. Conclusion 

The primary aim of this study was to demonstrate the application of logistic regression in the context of 
impact tests, utilizing a small dataset of only npc = 10 impact tests. The validity of the logistic regression model 
was assessed through GOF metrics and supplementary validation tests. These additional tests are in good 
agreement highlight the inherent 
probabilistic nature of the response of PC-vision panels under impact load.  

A deeper analysis of the safety performance of the panels on basis of the logistic regression model, indicates 
that relying solely on the evaluation of IR Y  O 
suggest that even minor fluctuations in projectile energy Epr significantly increase the likelihood of hazardous 
outcomes in impact tests. Consequently, this study proposes a further reduction of the IR Y by 5 %. This 
investigation underscores that valuable insights can be drawn from a small dataset of npc = 10 impact tests, 
thereby highlighting the efficacy and potential of the logistic regression approach in evaluating the safety 
performance of PC-vision panels. 
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