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Abstract 

The bounded transformed gamma process (BTGP) was recently proposed to describe degradation phenomena where the 
degradation growth is monotonic increasing and intrinsically bounded above. The BGTP is ruled by two monotone increasing 
functions, namely age and bounded state functions, whose functional form influences the behavior of the degradation model. 
In this paper, a Bayesian model selection procedure, based on the Bayes factor, is introduced to select the functional form of 
the bounded state function maximizing the marginal likelihood and thus providing the best fit to the available degradation 
data among suitable alternatives. The Bayesian model selection procedure involves prior information on the upper bound of 
the degradation phenomenon and on the behavior of the mean degradation function, and is performed by adopting some 
Markov Chain Monte Carlo procedures. The proposed approach is applied to a set of real data consisting of the wear 
measurements of the liners of an 8-cylinder Diesel engine for marine propulsion. 
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1. Introduction 

Many degradation phenomena affecting real-world technological units are intrinsically bounded, at least due 
to the finite size of deteriorating materials composing them. Nonetheless, only recently this aspect has been 
considered in the literature (Giorgio et al., 2015; Ling et al., 2015; Deng and Pandey, 2017), and detailed in 
(Fouladirad et al., 2023), where a new model called the bounded transformed gamma process (BTGP) has been 
proposed. The BTGP aims at modelling a monotonic increasing degradation phenomenon, where the degradation 
level can not exceed an upper limit . The distinguishing feature of the BTGP, with respect to other existing 
bounded degradation models (Giorgio et al., 2015; Ling et al., 2015; Deng and Pandey, 2017), is that in the 
BTGP the bound  is treated as an unknown parameter which must be estimated from the available data. 

The behavior of the BTGP is ruled by two specific functions, named bounded state function and age function. 
A maximum likelihood estimation (MLE) approach for the BTGP parameters has been presented in (Fouladirad 
et al., 2023), where different suitable functional models for the state and age functions have been evaluated and 
compared. In (Giorgio et al., 2023), a Bayesian inferential approach, based on Markov Chain Monte Carlo 
(MCMC) methods, has been introduced for the estimation of the parameters and functions thereof of the BTGP. 

In this paper, we consider the issue of selecting the BTGP model providing the best fit to the degradation data 
under study in a Bayesian framework. More specifically, given some prior information on the upper bound and 
on the behavior of the mean degradation function, we compare BTGP models with different functional forms of 
the bounded state function and, by computing the Bayes factor, we select the one providing the best fit to the 
observed data. In particular, the Bayes factor quantifies the statistical evidence to prefer one model over the other 
(Morey et al., 2016). It can be thought of as a Bayesian analog to the likelihood-ratio test but, since it uses the 
(integrated) marginal likelihood rather than the maximized likelihood, decisions made on the base of these tests 
generally do not coincide (Lasaffre and Lawson, 2012). Moreover, differently from the likelihood ratio test, in 
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addition to using prior information that the analyst possesses, the Bayes factor provides the evaluation of the 
evidence in favor of a competing model, rather than only allowing the analyst to reject the null hypothesis model 
or not (Ly et al., 2020). MCMC procedures are used for this purpose because the multivariate integrations 
involved in the computation of the marginal likelihoods can not be solved analytically. The proposed selection 
approach is finally applied to a set of real data consisting of wear measurements on the liners of an 8-cylinder 
engine of a cargo ship, already analyzed in (Fouladirad et al., 2023) and (Giorgio et al., 2023). 

2. The bounded transformed gamma process 

The bounded transformed gamma process (BTGP)  is a Markovian asymptotically bounded 
above monotonic increasing process with dependent increments (Fouladirad et al., 2023). The Markovian 
property implies that the BTGP is completely defined an initial condition, here , and by the 
conditional probability density function (pdf) of its increment  over the time interval ( ), 
given the current state , that is defined as: 

 , (1)  

where  is the upper bound,  is a non-negative, monotone increasing and differentiable function of the 
degradation level , defined over the domain , with  and ,  is 
the first derivative of  evaluated at , ,  is a non-negative, 
monotone increasing function, defined on the domain , with  and , 

, and  is the complete gamma function. 
The functions  and  are called age and bounded state function, respectively. Note that the function 

 is not bounded above, but it is called  the state function of a bounded process. From 
(1), the conditional cumulative distribution function (Cdf) of , given , is: 

, (2)  

where  is the (lower) incomplete gamma function. From (1) and (2), by substituting 
,  and  by , , and , respectively, the pdf  of the 

degradation level  of a new unit, being , can be immediately retrieved: 

, (3)  

while the Cdf  is given by: 

  . (4)  

To completely define the BTGP, we need to assign functional forms to  and . Different suitable forms 
for the age function are available for the transformed gamma processes and can be used also for the BTGP, see 
(Fouladirad et al., 2023). In this paper, we focus on the well-known and ductile power-law function: 

 , (5)  

where the parameter a is the (time) scale parameter, while the exponent b governs the shape of the age function 
and is a key parameter ruling the behavior of the mean degradation over time t, as discussed below. 

Regarding the state function, the following three functional forms are proposed for the bounded state function 
among other possible choices, see also (Fouladirad et al., 2023): 

, (6)  

 , (7)  

 , (8)  

providing a reasonable trade-off between flexibility and model simplicity. Their first derivatives are: 

 ,    , (9)  



   

 ,    , (10)  

 ,   , (11)  

respectively. Henceforth, we refer to as , , and  models with the age function in (5) and 
bounded state function , , and  reported in (6), (7), (8), respectively. It is worth noting that the 
parameter  acts as scale parameter on the wear axis, while  is a multiplicative constant. 

With this state function, mean and variance of the degradation level  are not available in a closed form. 
However, they can be easily computed by univariate numerical integrations as follows: 

 , (12)  

 . (13)  

In Figure 1, the behavior of the mean degradation function  of the model  is depicted for 
, , and some selected values of  and . 
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Fig 1. The behavior of the mean function of the BTGP model ,where , , for some selected values of , and for  
(a) ; (b) ; (c) . 

 



   

It is possible to notice that the mean function  is concave from the beginning when , and its 
first derivative with respect to  decreases monotonically with  (see Figure 1a), while it initially grows almost 
linearly, and then becomes concave, when  (see Figure 1b). Remarkably, the mean function shows an 
inflection point when  (see Figure 1c), i.e. when  is convex, while the parameter  has no effect on the 
behavior of the mean function, because it acts almost like a time scale parameter. A similar behavior is exhibited 
by the models  and  highlighting that the parameter  is a key parameter governing the shape of 

 over . 

3. The Bayesian procedure 

To incorporate the prior knowledge of the analyst derived from her/his experience with similar degradation 
processes into the estimation procedure, we adopt a Bayesian model selection approach where different kind of 
prior information on the observed phenomenon can be included. After presenting the likelihood function of wear 
data, both vague and informative priors are proposed, depending on the available prior information. All the 
proposed priors are proper distributions because the Bayes factor can be computed only when all priors are 
proper.  

3.1. The likelihood function 

Let us suppose that  identical degrading units are operating under the same working conditions and that the 
unit  ( ) is inspected  times at the ages  ( ). Let  be observed value of the 
degradation level  of the unit  measured at the inspection time . The conditional pdf of 

, given , can be derived from (1) as follows: 

 , (14)  

where  is one of the derivatives in (9)-(11), ,  where 
 has one of the functional forms in (6)-(8) and , with  for all . 

Given the data vector , the likelihood function is then: 

 , (15)  

where  is the vector of model parameters. 

3.2. The prior information 

The prior information that we assume the analyst may possess refers to some physical characteristics that are 
relevant for a bounded degradation process and can be retrieved from analyst experience. 

In particular, for bounded degradation processes, the upper bound  is a key parameter. One basic 
information available for  is that it must be greater than the maximum degradation level  observed in the 
current study or in past studies involving similar degrading units. Other prior information might be eventually 
available depending on the application.  

Several proper prior distributions on  can be reasonably proposed for technological applications, depending 
on the degrees of knowledge of the analyst on the application itself. Some of them are listed below: 

 no information is available on , except that , and hence the (vague) 2-parameter exponential 
prior, with location parameter equal to , is used: 

 , (16)  

where the parameter  is sufficiently small with respect to  (say, ) in order to ensure that 
the prior (18) is truly vague; 

 an interval ( ) of equally probable values for , with , can be formulated on , and 
hence the uniform prior over the interval ( ) is used: 

 ; (17)  

 the analyst can provide a prior value of the mean  and the variance  of , under the constraint 
. Thus, the following 3-parameter gamma distribution, with location parameter equal to , is 

used: 



   

, (18)  

where the prior parameters  and  can be computed as  and 
. 

Another kind of information the analyst can derive from her/his experience is pertinent to the shape of the 
mean degradation function , more specifically she/he can provide some hints on the presence of an 
inflection point of . This information can be converted into a prior information on the shape parameter 

 of the age function  in (5) because, as discussed in Section 2, the mean function  shows 
an inflection point when  is larger than 1, it is concave from the beginning when  is lower than 1, while it 
initially increases linearly when  is equal to 1. Several proper prior distributions on  can be thus proposed 
based on the degree of knowledge on the shape of the mean function , as follows: 

 the only prior information on  is that it has no inflection point, and thus the uniform prior is 
used: 

; (19)  

 it is known that the mean function  has no inflection point and it is also possible to formulate 
a prior mean  and a prior variance  of . Thus, assumed , the following Beta prior is 
adopted: 

, (20)  

  where the parameters  and  can be computed by  and  
  , respectively; 

 the analyst knows that  has an inflection point and she/he can also provide a value for the 
prior mean  and the variance  of . Then, assumed , the following 3-parameter gamma 
distribution, with location parameter equal to 1, is adopted: 

  , (21)  

  where the parameters  and  can be computed as  and . 
 the analyst knows that  initially increases almost linearly and she/he can also provide a value 

for the variance  of . Thus, the following 1-parameter gamma distribution, with unit mean and 
variance , is adopted: 

  , (22)  

  where the parameter  is given by . 
Regarding the other two process parameters  and , we assume that no information is available 

corresponding to uniform vague prior pdfs over the intervals ( ) and ( ) for  and  large enough 
values, respectively: 

  and    . (23)  

4. Model selection and Bayes factor 

The Bayesian inferential approach discussed in Section 3 can be applied to any bounded transformed bounded 
process. For a given data set, we have three competing degradation models, say ,  and , to 
compare. More specifically, we want to select the model which provides the best fit for the available data and 
hence good estimates and predictions. Obviously, the proposed approach can be easily extended to compare 
other BTGP models with state or age functions different from those analyzed in this paper. 

For model selection in a Bayesian framework, different strategies are available. Some of them focus on the 
predictive accuracy of the models, measured by cross-validation approaches, or by computing some popular 
information-based metrics among which we mention the Deviance Information Criterion (DIC) presented in 
(Spiegehalter et al., 2002), and the Watanabe-Akaike or Wide Applicable Information Criterion (WAIC) 
introduced in (Watanabe, 2010). For further readings, see (Gelman et al., 2014). 

Other ways to compare models is through the quantification of the evidence in favor of one model with 
respect to the others, typically based on the Bayes factor, introduced by (Jeffreys, 1961). Given two competing 
models, say  and , that may have generated the observed data , a Bayesian approach to model selection 
between the two models relies on the posterior probabilities: 



   

     and     ,  (24)  

that represent a measure of the evidence in favor of models  and , respectively, given the data . After 
assigning the prior probabilities  and  of the two models, it is possible to compute 
the posterior probability of model  ( ) as follows: 

  ,   , (25)  

where , frequently called the marginal likelihood for the model , is the marginal probability 
(distribution) of the observed data  under the model  ( ). The marginal likelihood  can be 
computed by a (multiple) integration over the parameter space  of the product of the likelihood function 

 under  and the (joint) prior distribution  of the vector  of the parameters of the 
model , viz. 

 ,   . (26)  

Using the posterior probabilities (25), a measure of the evidence provided by the available data  in favor of 
model  over model  is the Bayes factor  that is defined as the ratio of posterior odds of  (with respect 
to ) and its prior odds, see for instance ( , 2004): 

 , (27)  

where the second equality holds after (25) and suggests that the Bayes factor can be also expressed in terms of 
ratio between posterior  and prior  odds of model  and , see also 
(Gill, 2002; Campbell and Gustafson, 2022). It is worth noting that the marginal probabilities (26) depend on the 
prior distribution  of the model parameters. 

Large values of the Bayes factor  provide evidence in favor of model , while small values (or, 
equivalently, large values of ) provide evidence against . Different criteria to evaluate the 
evidence in favor of model  over  are available. The following guidelines, based on the metric , 
are provided in (Kass and Raftery, 1995):  

 if the value of  is in the range [0, 2], the evidence in favor of  is not worth than a bare 
mention; 

 for a value of  in the range [2, 6] there is positive evidence in favor of ; 
 there is strong evidence for a value of  in the range [6, 10]; 
 there is very strong evidence in favor of  for . 

Obviously, working with  is possible to evaluate the evidence in favor of  (i.e., against ), by using 
the same rules. To correctly adopt the Bayes factor, some recommendations are necessary. The prior 
distributions for the parameters of each model must be specified and, as anticipated in Section 3, all the prior 
distributions must be proper to compute the marginal likelihoods  of the data  under the model  
( ). Otherwise, all the , and thus the Bayes factor, would be computed up to an undefined 
multiplicative constant. Consequently, if no information for a model parameter is available, a proper non-
informative or weakly informative prior distribution must be used. Moreover, the Bayes factor is quite sensitive 
to the choices of prior distributions. For instance, if the prior distribution of a parameter of the model  is 
strong but wrong, the Bayes factor  can provide evidence against the model  even if this model is the most 
appropriate to describe the observed data. Thus, strong prior distributions are suggested to be used only if the 
prior distribution is expressed in terms of a parameter that indexes both the models, while the prior distribution 
on parameters indexing only one of the competing models must be non-informative or weakly informative. 

5. A Markov Chain Monte Carlo procedure for Bayes factor estimation 

In most practical scenarios, Bayesian methods require challenging and highly time-consuming numerical 
integrations, like those involved in the calculation of the marginal probabilities (26). To circumvent this 
problem, different procedures are available to compute the Bayes factors by using MCMC sampling methods, 
see for instance (Christensen et al., 2011; Lodewyckx et al., 2011). Some of them, named transdimensional 
MCMC, rely on combining the  models to be compared within a hierarchical supermodel forming a mixture 
model where each model is indexed by  (Carlin and Chib, 1995; Green, 1995), whose prior distribution is 

, . In general transdimensional MCMC settings, models can have parameters  
defined on parameter spaces  ( ) that may differ from model to model. In this case, all the 



   

parameters can be arranged in a parameter vector , that is an element of the parameter space 
. 

However, in this paper we consider BTGP models with the same parameters, and the overall parameter vector 
is simply that of single models, i.e. . The full mixture supermodel of data and model 
parameters can be written as: 

, (28)  

where  is the joint probability distribution due to the Bayesian model . 
Similarly to (26), the marginal likelihood  of the BTGP model  is given by: 

. (29)  

From (27), for mixture model in (28), the Bayes factor  of model  with respect to model  (
 and ) can be calculated by taking the ratio between  and . 

However, to avoid the high-dimensional numerical integrations in (29) by exploiting the second equality in 
(27), we compute the Bayes factor as: 

, (30)  

where posterior model probabilities are easily estimated by MCMC posterior sampling methods. 
Indeed, a simple estimator of the posterior probability of each model  (  is: 

, (31) 

as suggested in (Lodewyckx et al., 2011). 
A convenient common choice for prior probability of model  is to assume that ,  

, accounting for equally likely models. 
More specifically, for each model  ( , the MCMC algorithm generates a five-dimensional 

pseudo-random vector sample of size , that is  ( ), from the joint 
posterior pdf , where the joint posterior pdf of the model 
parameters is: 

, (32)  

where priors  and , in the considered case, do not depend on . 
The sample is collected after a sufficiently large burn-in period to make negligible the influence of the 

starting point of the MCMC and of the choice of , which the Bayes factor does not depend on. 
After collecting the vector sample , we can estimate the posterior probability of each model  by 

(31), and then we can estimate the Bayes factor by using (30).  

6. Numerical application 

We apply the proposed approach to select the model providing the best fit, between the three competing 
statistical models ,  and , for the wear measurements of the liners of an 8-cylinder marine 
engine in Table 1. Observed data are depicted in Figure 2, where data pertaining to the same wear path are 
connected by lines. 

We then assume that the analyst, based on previously observed similar degradation phenomena, knows that 
the upper bound  is surely larger that  mm, and the mean degradation function has an inflection point, 
guaranteeing that . Moreover, the analyst can also provide the prior values of the mean and variance of  
and of :  mm and  mm2,  and . Thus, the prior pdfs for the 
BTGP parameters are (Giorgio et al., 2023): 

 the 3-parameter gamma prior (18) on , with parameters  and 
, and 

 the 3-parameter gamma prior (21) on , with parameters  and  
. 

The prior parameters  and  are set equal to 200 and 50,000 h, respectively, to guarantee that the prior 
distributions on  and  include a very large portion of the range supported by the likelihood. Finally, the  
BTGP models are considered equally likely, and thus the prior probabilities for  are , . 

Thus, the assumed joint prior pdf of , and , given , is: 
 



   

,    (33)  

with , ,  mm, , and . 

Table 1. Wear  [mm] accumulated by liner  up to the inspection time  [h]. 

         
1 11,300 0.90 14,680 1.30 31,270 2.85   
2 11,300 1.50 21,970 2.00     
3 12,300 1.00 16,300 1.35     
4 14,810 1.90 18,700 2.25 28,000 2.75   
5 10,000 1.20 30,450 2.75 37,310 3.05   
6 6,860 0.50 17,200 1.45 24,710 2.15   
7 2,040 0.40 12,580 2.00 16,620 2.35   
8 7,540 0.50 8,840 1.10 9,770 1.15 16,300 2.10 
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Fig. 2. Observed wear paths of the liners. 

Table 2. Bayes factors estimates for different couples of BTGP models. 

Comparing models   Interpretation 

2 vs 1 9.755 4.556 positive evidence in favor of  against  
3 vs 1 3.440 2.471 positive evidence in favor of  against  
2 vs 3 2.836 2.085 positive evidence in favor of  against  

 
To collect posterior samples of  composed by  five-dimensional vector elements, 

we used a burn-in period of 105 iterations and a thinning interval equal to 200, guaranteeing convergence of the 
MCMC algorithm to the target distribution, and very good mixing. 

From (31), we compute the posterior probabilities for the three BTGP models and compute all the Bayes 
factors for each couple of models by (30) that can be rewritten as 

, and  , (34)  

since all the three models have the same prior probability. The estimated Bayes factors in Table 2 show that, 
according to the rules recalled in Section 4, positive evidence exists in favor of the  model (that is, the 
BGTP model with the bounded state function (7)), against the other two competing models having state 
functions (6) and (8), respectively, and hence we can conclude that, given the selected prior distributions, the 

 model provides the best fit to the wear data in Table 1. 
Computations to obtain the results reported in Table II have been performed by routines implemented in 

OpenBUGS (Lunn et al., 2009). 
 
 



   

7. Conclusions 

In this work, a Bayesian procedure based on the Bayes factor has been developed for selecting, among several 
bounded transformed gamma processes (BTGP) with different state functions, the model that provides the best 
fit for an observed data set. Some prior information on the upper bound  for the degradation level and on the 
shape of the mean degradation function are assumed to be available. Computations have been performed by 
adopting a transdimensional Monte Carlo Markov Chain technique. The proposed approach has been applied to a 
set of real wear data of liners of an 8-cylinder marine engine, showing the feasibility of the suggested Bayesian 
model selection procedure. 
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