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Abstract 

Quantum computing is a novel computational paradigm that holds the potential to revolutionize the approach we currently 
use to tackle complex computational challenges in science and engineering. Over the last few years, quantum computing has 
gained immense popularity, mainly due to the exciting advances in hardware development achieved by companies such as 
IBM and Google. These advances motivate the exploration of a novel set of quantum-based algorithms to assess under which 
circumstances an advantage with respect to traditional computers is achievable. However, despite the recent advancements in 
the field, a large gap remains between quantum computing research and its practical applications in engineering. Even though 
quantum computing is still in its early phases of development, we believe that it is important for the risk and reliability 
research community to become familiarized with these novel algorithms in order to be prepared for when high-capacity 
quantum hardware becomes readily available. This paper presents three main contributions aimed to help close the 
aforementioned gap. First, a probabilistic-based introduction to quantum computing theory is presented to the reader, 
focusing on the math behind the operations performed by a quantum computer and ignoring quantum mechanics whenever 
possible. Second, the paper provides a curated set of existing literature combining quantum computing algorithms with risk 
and reliability applications. For this, we focus the discussion on the fields that are believed to hold the greater potential for 
advantage: combinatorial optimization and sampling enhancement routines. Finally, we list several research avenues that, 
from promise for the field of risk and reliability. 
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1. Introduction 

Quantum computing is a novel set of techniques that holds the potential to surpass the current computational 
capabilities of traditional computers for a selected group of tasks in science and engineering. To achieve this 
theoretical advantage, quantum computers leverage the properties of quantum mechanics to perform computation 
at a larger scale. Quantum computers are machines built to manipulate and measure a physical system, using 
natural laws to perform computation. In that sense, they are more akin to mid-century analog computers 
(Lundberg, 2005) than to modern, traditional computers. Over the last five years, quantum computing has started 
to gain traction in research circles outside of quantum mechanics and computer science due to the exciting 
developments in quantum-focused hardware and software, pushed forward by companies such as IBM, Google, 
Xanadu, and others. The expectation is for quantum computers to reach the capacity required for practical 
applications in the next decade.  

These advances in quantum hardware have motivated a surge of exploration analysis regarding quantum 
algorithms with the objective of identifying advantages over classical counterparts. Notable examples of 

(Shor, 1997) 
algorithm (Grover, 1996) which have been proved to surpass traditional approaches in the factorization of prime 
numbers and search tasks in unstructured databases, respectively. However, despite the recent developments in 
the field, there exists a substantial gap between quantum computing research and its practical implementation for 
engineering tasks. This gap can be attributed, in principle, to the notable disconnection between the 
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mathematical and physical interpretations used in quantum mechanics versus other fields of engineering. Even 
though quantum computing is still in its early phases of development, we believe that it is important for the risk 
and reliability community to develop, explore, and test these novel algorithms to participate in the global 
discussion and to be prepared for when high-capacity quantum hardware becomes easily available.  

To bridge the aforementioned gap, this paper presents three main contributions. First, an introduction to 
quantum computing theory is provided to the reader, which is centered around a probabilistic interpretation of 
quantum computers in order to trace parallels with the field of risk and reliability. Additionally, we place special 
emphasis on the mathematical description of the operations that a quantum computer performs in an attempt to 
isolate the explanation from quantum physics as much as possible. Our second contribution is the development 
of a curated set of references combining quantum computing algorithms with risk and reliability applications. 
The objective is for this set to serve as an introductory reading list to the capabilities and early exploration of 
quantum computing in our field. For this curated set, we focus the discussion on the fields that hold the greatest 
promise for achieving advantages over classical algorithms: combinatorial optimization, and probabilistic 
inference and sampling tasks. Our final contribution is the description of several future research avenues that, 
from the authors  perspective, hold promise for the field of risk and reliability. 

The paper is structured as follows. Section 2 offers a quantum computing primer based on a probabilistic 
perspective. Section 3 continues with an overview of current applications of quantum-based optimization within 
the risk and reliability domain, centering the discussion on the Quantum Approximate Optimization Algorithm 
(QAOA). Section 4 reviews the existing applications of quantum computing for enhancing sampling and 
inference techniques, using the Quantum Amplitude Amplification Algorithm (QAAA) as the main tool. Finally, 
Section 5 presents our concluding remarks and outlines the main quantum computing research avenues that we 
believe hold great promise for the field of risk and reliability. 

2. Quantum computing primer: a probabilistic perspective 

A quantum computer is a physical machine capable of holding, measuring, and manipulating a quantum state. 
A quantum state is the mathematical representation that summarizes the knowledge about a quantum system. In 
quantum computing and quantum mechanics, states are represented using complex vectors. Through this section, 
we use the ket notation to denote complex vectors:  . 

The simplest quantum state possible is represented by a 2D complex vector, , commonly refer 
to as a quantum bit or qubit. Larger quantum states are formed by combining multiple qubits together using the 
Kronecker product operation. Consequently, a quantum state that results from the Kronecker product between  
qubits will be a  dimensional vector, as shown in Eq. (1). 

 

(1) 

 

As with any other component of a vector space, a quantum state can be decomposed into a linear combination 
of basis vectors. The preferred base to perform this operation in quantum computing is the canonical base 
composed by the set , where  is a vector full of zeros, with a 1 in the j-th position. Using this basis, 
the quantum state  can be decomposed as: 

 

(2) 

 

An important limitation of quantum computers is that they cannot read a quantum state directly. This 
limitation is derived from the principles of quantum mechanics. To overcome this issue, quantum computers 
perform an operation known as measurement. When a measurement is performed over a quantum state , the 
result is always one of its basis vectors . Which one is obtained in each measurement is determined by a 
probability distribution that directly depends on the set of complex numbers , as shown in (3). 

 

(3) 
 

Equation (3) reveals a fundamental interpretation of quantum computing: each quantum state  can be 
interpreted as an object encoding a discrete probability distribution over the set of basis vectors . This 
probability distribution can be estimated by performing multiple measurement operations and recording their 
outputs.  



   

Quantum computers are also capable of modifying quantum states. This modification is mathematically 
described in (4), where a set of unitary1 matrices , is applied to an initial quantum state 

 to transform it into the new quantum state . This application is given by traditional matrix 
multiplication. 

 

(4) 

 

These unitary gates can also be parametric, i.e., they can incorporate external information defined by a user, 
). The process of defining these unitary operations and their inputs is akin to the process of writing 

code for a digital computer. Equation. (4) can also be interpreted through a probabilistic perspective: by 
modifying the initial quantum state, the quantum computer is changing the probability weights assigned to each 
one of the basis vectors, thus transforming the original probability distribution.  

So far, we have described from a mathematical point of view the operations performed by a quantum 
computer. Now, we contextualize these operations in a framework to solve practical problems. The underlying 
idea behind quantum computing is to identify the set of candidate solutions for a particular problem with the set 
of basis vectors , forming a one-to-one relationship. Then, starting from an initial quantum state 
encoding an uninformative probability distribution (for example, a uniform distribution), information about the 
problem is incorporated through the application of parameterized unitary matrices to the initial quantum state. 
Finally, the transformed quantum state is measured to estimate the resulting probability distribution. The 
expectation is for this final probability distribution to assign a high likelihood to the correct solution of the 
original problem. This framework is graphically depicted in Fig. 1. 

 

 
Fig. 1. Probabilistic framework used by quantum computing to solve practical problems. 

It is important to note that quantum computing does not represent a universal approach to perform 
computation, but just an alternative way of solving a certain type of challenges that can be interpreted as finding 
a suitable probability distribution over a set of candidate solutions. While in principle limited, many relevant 
tasks within the risk and reliability field fall into this category. For example, classification problems, widely used 
for the diagnosis and prognosis of health states, can be looked through this lens. For this paper, we focus on how 
combinatorial optimization inference and sampling problems can be solved using the framework described in 
Fig. 1. 

But before delving into those two applications, we first provide motivation for why scientists and 
practitioners believe quantum computing can offer advantages over traditional computation. First, note that a 
quantum computer is a physical system. As such, all the transformation and measurements that occur inside of it 
are not a digital simulation, but an actual physical system that responds instantly to the changes it is subjected to. 
In this sense, a quantum computer is much more akin to an analog computer (Lundberg, 2005) than to a 
traditional, digital computer. Second, as shown in (1) and (4), quantum computing allows the multiplication  
of exponentially large matrices given a relatively reduced set of qubits. As an example, for a system with  

 qubits, the transformation of quantum states involves the multiplication of a vector of dimension  
 
 

 
 A unitary matrix fulfils that its inverse is also its conjugate transpose, i.e., . 



 with a matrix of dimension . Even though that operation is 
impossible to perform in a traditional computer, it is instantly computed in a quantum computer by just letting 

challenge that quantum computing faces now, other than the actual development of capable, error-corrected 
hardware, is of algorithmic nature: how should we design these unitary matrices to solve practical problems? In 
this paper, we will provide the status of this question for two fields: combinatorial optimization, and probabilistic 
inference and sampling. 

The current landscape in quantum hardware is usually referred to as NISQ: Noisy Intermediate-Scale 
quantum era (Lau et al., 2022). These machines are characterized by a low count of qubits and a high rate of 
measurement errors. The development focus is currently placed on solving these two issues. However, while 
increasing the number of connected qubits has shown steady progress over the last few years, decreasing the 
error rate has proved more challenging. Due to quantum computers being physical systems, they naturally 
interact with the environment around them. Quantum systems, in particular, are extremely sensitive to 
environmental changes, including changes in electromagnetic fields, temperature, and vibrations. All these 
perturbations can induce unsolicited alterations in the internal complex coefficients of the quantum state and 
produce errors in the final computation. How to minimize this perturbations and control for the inevitable ones is 
an active area of research in quantum hardware. 

For the challenges mentioned above, most researchers and practitioners use simulation environments to 
explore the capabilities of quantum algorithms. These simulation environments are software programs that are 
executed on traditional computers with the objective of perfectly simulate the behavior of an error-corrected 
quantum computer. While the evident advantage of this approach is the lack of measurement errors, the 
disadvantage is that the capacity of such simulators is limited to the capacity of traditional computers. 
Consequently, only quantum systems up to 20 or 25 qubits can be efficiently simulated in this manner. 

In what follows, we show how quantum computing is currently being used to solve combinatorial 
optimization and probabilistic inference problems within the Risk and Reliability context, and what 
developments in the area are good alternatives to explore in a near future. 

3. Quantum-based combinatorial optimization 

Why quantum computers are thought to present an ideal environment to solve optimization problems?  
As mentioned before, a quantum computer is a physical system. Consequently, it will inherently have  
all the properties we usually recognize in them, such as an energy level. The energy level of a quantum  
computer directly depends on its quantum state. As with any other physical system, if the quantum  
computer is left to naturally evolve its internal system, it should reach a state of local minimal  
energy. This evolution process is the basis for quantum-based combinatorial optimization. The general  
idea is to first identify each of the basis vectors of the quantum state with one of the candidate  
solutions for the optimization problem. Then, the objective function is encoded into a set of unitary  
operations. These operations are expected to assign a higher likelihood to the set of states that are optimal or near 
optimal. 

From a practical point of view, the process of slow evolution is implemented in a quantum computer using  
an approach called Quantum Approximate Optimization Algorithm (QAOA), proposed by Farhi et al. in 2014 
(Farhi et al., 2014). The QAOA is graphically depicted in Fig. 2. 

As Fig. 2 shows, the QAOA approach repeatedly applies a set of unitary operations . The  
Cost unitary operation ( ) is the one in charge of encoding the objective function into the quantum  
computer. The Mixing unitary operation ( ), is tasked with the exploration of the set of candidate  
solutions, making sure that all possible combinations are considered. Fig. 2 shows this set of operations applied 
to the initial quantum state a total of  times. In accordance with quantum computing theory,  
the higher the number of operation applications, , the better the process of slow evolution is  
approximated by the QAOA, and consequently higher-quality solutions should be achieved. For a  
complete review of the QAOA, the reader is refer to (Choi and Kim, 2019; San Martin and Lopez Droguett, 
2023). 

 
 



   

 

Fig. 2. Unitary operations that compose the Quantum Approximate Optimization Algorithm (QAOA). 

An important limitation of the QAOA approach is that it is designed to exclusively Quadratic  
Unconstrained Binary Optimization (QUBO) problems. This is a relevant restriction, as a large percentage  
of relevant optimization problems in science and engineering fields are not QUBOs. A significant portion  
of the current research effort concerning the application of the QAOA is dedicated to exploring approaches  
to transform relevant optimization problems into QUBOs (Akrobotu et al., 2022; Glover et al., 2019; Papalitsas 
et al., 2019). 

Early exploration of the QAOA algorithm has primarily been conducted in fields related to Operations 
Research and Finance. For example, Brandhofer et al. (Brandhofer et al., 2022) presents a complete assessment 
of the QAOA performance for the task of portfolio optimization. In their assessment, it is shown the effect  
of utilizing different mixing operations for the solution finding process. Additionally, design guidelines related 
to the cost unitary operation are also provided. The QAOA has also been applied in risk and reliability 
applications, using smaller case studies and quantum simulation environments to study under which conditions  
it can produce suitable results.  

Indeed, San Martin and Lopez Droguett (San Martin and Lopez Droguett, 2023) proposed an approach  
to perform sensor placement optimization in civil infrastructure using the QAOA algorithm. In this approach,  
the Modal Strain Energy (Tan and Zhang, 2020) criteria is transformed into a QUBO objective function,  
and then the QAOA is used to find near-optimal sets of sensor configurations. The approach is validated using 
two numerical case studies concerning relevant civil structures: a shear building and a Warren truss bridge. 
Another example of the use of quantum-based optimization within the field of sensor placement  
optimization it presented by Speziali et al. (Speziali et al., 2021). In their paper, the authors proposed  
a methodology for identifying optimal configurations in Water Distribution Networks (WDN). For  
this, pipes and pumping stations within the WDN are first characterized as a mathematical graph. Then,  
a QUBO problem is formulated to find the minimum vertex cover in the resulting graph. The minimum vertex 
cover problem finds the smallest set of nodes (pumping stations) in the graph such that all edges (pipes)  
are at least incident to one of them. In practical terms, this solution strategy ensures that the resulting  
sensor configuration will facilitate the fast identification of anomalies within the network while installing 
minimum equipment.  

Quantum computing theory has also been used to inspire the modification of traditional optimization 
techniques. This approach is usually referred to in the  
(Gharehchopogh, 2023). We provide two relevant references regarding this type of approach. First,  

 provides a review of quantum-inspired  
algorithms to solve system reliability challenges. This review focuses -inspired  

 
the reliability of an engineering system. Also focused on the redundancy allocation problem, but presenting  
a numerical case study, our second recommended reference is Paramanik et al. (Paramanik et al., 2023),  



which near optimal solutions  
in order to enhance the overall reliability of a given system.  

4. Quantum-based probabilistic inference 

Here, we pose another question: why probabilistic inference and sampling tasks can be solved using a 
quantum compute?  

As shown in Section 2, a quantum computer can be understood as a machine that transforms probability 
distributions over a discrete set of elements. As such, they represent ideal playgrounds to implement 
probabilistic models such as Bayesian networks. Moreover, by encoding a particular probabilistic model into a 
quantum computer, they can be extended with the attributes of additional quantum algorithms. As we will see in 
this section, this interconnectivity between traditional probability models and quantum algorithms results in very 
rich interactions that can hold benefits for inference and sampling tasks.  

First, it is necessary to briefly review how probabilistic models are encoded into a quantum computer. 
Currently, the main encoding approach is the one given by Borujeni et al. (2021), where it is proposed  
an algorithmic process to translate a Bayesian network over categorical variables into a unitary operation. 
However, this approach has two main limitations. First, it is not suited for encoding random variables 
representing continuous probability distributions. This is a relevant drawback as many operational variables  
in risk and reliability applications are modelled as Normal, Log-Normal, or Weibull distributions.  
Second, the number of qubits required to encode a Bayesian network scales at least linearly with the number  
of random variables in the model. This requires relatively large quantum computers to encode practically 
relevant models.  

When the probability model is encoded into the quantum computer, each measurement of the final  
quantum state is equivalent to computing one forward pass of the Bayesian network. While interesting  
from a theoretical point of view, this approach on its own would not be conducive to any advantages  
over traditional computers. For that reason, the encoding of Bayesian networks as a unitary operation is  
usually combined with a protocol called the Quantum Amplitude Amplification Algorithm (QAAA),  
proposed originally by Low et al. (Low et al., 2014). The QAAA is capable of increasing the likelihood  
of sampling from a particular subset of states. In probabilistic terms, this is equivalent to increasing  
the likelihood of sampling from a conditional probability distribution , where is a set  
of query variables and  is a set of evidence states. Therefore, this operation can produce immense benefits  
for risk and reliability applications, particularly in terms of characterization of low-probability, high-
consequence scenarios. 

For example, San Martin and Lopez Droguett and  presented  
an approach that combines the Bayesian network encoding process and the QAAA to explore more efficiently 
the failure space given by the probabilistic model. Experimental results obtained from a small case study  
show that the proposed quantum approach can obtain an advantage over traditional rejection sampling using 
Monte Carlo simulation for obtaining more accurate estimates of the conditional failure probability using  
the same number of samples. In a similar fashion, Nikmehr and Zhang (N2023) used the Quantum Amplitude 
Estimation (QAE) algorithm to perform a reliability assessment of several power systems varying in their 
complexity. 

An alternative application of quantum computing to study risk and reliability related models is presented  
by San Martin et al. (San Martin et al., 2022). In their paper, they describe how a fault tree model can be  
encoded into a unitary operation. Results from a case study concerning a Dynamic Positioning System  
(DSP) show that the execution of this unitary operation is equivalent to performing a Monte Carlo  
simulation over the original fault tree. On a final example, Zio (Zio, 2023) proposes the use of  
quantum-based probability theory to analyze the reliability of a wireless network system. This is  
done through the framework of Bayesian networks and their quantum counterpart. The final result  
is a reliability measure dependent on a term denoted as the interference. This term comes from  
considering the probabilities of events as complex numbers, and therefore from the interaction of their  
phases. In practical terms, this extra parameter can be used to incorporated operational data into the quantum 
model. 



   

5. Concluding remarks and future research 

This paper attempts to close the relevant gap that currently exists between quantum computing and the 
exploration of practical applications in the field of risk and reliability. For this, a math-based introduction of the 
theory behind quantum computing was presented to the reader, followed by the presentation of two relevant 
applications: quantum-based combinatorial optimization, and quantum-based inference and sampling 
enhancement. In each section, a curated set of references were included to introduce the reader into the 
development of this field.  

Based on the past discussion, we highlight four key research paths that we believe hold great promise  
for the field of risk and reliability in the near future. First, in relation to quantum-based combinatorial 
optimization, a major challenge to solve is in relation to the restrictions placed upon the objective  
functions that can be tackled using the QAOA. As explained in Section 3, the QAOA is only suited  
for solving QUBO problems. For this reason, research in the area should focus on developing methods  
to transform the most relevant optimization problems in the field of risk and reliability towards QUBO 
formulation.  

Concerning quantum-based probabilistic inference and sampling, significant challenges remain in enhancing 
the flexibility and efficiency of encoding methods for Bayesian networks. A notable unresolved issue is the 
integration of Bayesian networks containing continuous variables into quantum algorithms. Similarly, the 
quantum encoding of systems with practical relevance currently requires many times more qubits than what is 
available in modern quantum computers. As such, developing approaches that can make better use of quantum 
resources while increases the range of random variables that can be encoded into the system appears to be the 
logical trajectory for further advancement. 

Finally, our expectation is for this paper to pave the way for extensive exploration of  
quantum-based algorithms in the field of risk and reliability applications. Quantum computing is  
currently undergoing exciting advancements, presenting opportunities across all disciplines. The early  
testing of these approaches will reveal crucial for researchers and practitioners alike in welcoming these new 
capabilities. 

References 

Akrobotu, P. D., James, T. E., Negre, C. F. A., Mniszewski, S. M. 2022. A QUBO formulation for top- PLoS ONE, 
17(7), e0271292. https://doi.org/10.1371/journal.pone.0271292 

 2022. Review of quantum (-inspired) 
optimization methods for system reliability problems. Proc. Probabilistic Saf. Assessment Manag.(PSAM). 
https://www.iapsam.org/PSAM16/papers/LA260-PSAM16.pdf 

Borujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C., Steck, J. E. 2021. Quantum circuit representation of Bayesian networks. 
arXiv:2004.14803 [Quant-Ph]. http://arxiv.org/abs/2004.14803 

 2022. Benchmarking the 
performance of portfolio optimization with QAOA. https://doi.org/10.48550/arXiv.2207.10555 

Choi, J., Kim, J. 2019. A Tutorial on Quantum Approximate Optimization Algorithm (QAOA): Fundamentals and Applications. 2019 
International Conference on Information and Communication Technology Convergence (ICTC), 138 142. 
https://doi.org/10.1109/ICTC46691.2019.8939749 

Farhi, E., Goldstone, J., Gutmann, S. 2014. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [Quant-Ph]. 
http://arxiv.org/abs/1411.4028 

Gharehchopogh, F. S. 2023. Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification. Artificial Intelligence 
Review, 56(6), 5479 5543. https://doi.org/10.1007/s10462-022-10280-8 

Glover, F., Kochenberger, G., Du, Y. 2019. A Tutorial on Formulating and Using QUBO Models (arXiv:1811.11538). arXiv. 
https://doi.org/10.48550/arXiv.1811.11538 

Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium 
on Theory of Computing  - , 212 219. https://doi.org/10.1145/237814.237866 

Lau, J. W. Z., Lim, K. H., Shrotriya, H., Kwek, L. C. 2022. NISQ computing: Where are we and where do we go? AAPPS Bulletin, 32(1), 
27. https://doi.org/10.1007/s43673-022-00058-z 

Low, G. H., Yoder, T. J., Chuang, I. L. 2014. Quantum inference on Bayesian networks. Physical Review A, 89(6), 062315. 
https://doi.org/10.1103/PhysRevA.89.062315 

Lundberg, K. H. 2005. The history of analog computing: Introduction to the special section. IEEE Control Systems Magazine, 25(3), 22 25. 
https://doi.org/10.1109/MCS.2005.1432595 

Nikmehr, N., Zhang, P. 2023. Quantum-Inspired Power System Reliability Assessment. IEEE Transactions on Power Systems, 38(4), 3476
3490. https://doi.org/10.1109/TPWRS.2022.3204393 

Papalitsas, C., Andronikos, T., Giannakis, K., Theocharopoulou, G., Fanarioti, S. 2019. A QUBO Model for the Traveling Salesman Problem 
with Time Windows. Algorithms, 12(11), Article 11. https://doi.org/10.3390/a12110224 



Paramanik, R., Mahato, S. K., Bhattacharyee, N. 2023. Optimization of Redundancy Allocation Problem Using Quantum Particle Swarm 
Optimization Algorithm Under Uncertain Environment. In H. Garg (Ed.), Advances in Reliability, Failure and Risk Analysis (pp. 177
197). Springer Nature. https://doi.org/10.1007/978-981-19-9909-3_8 

 2023. Quantum Inference for Reliability Assessment. 2023 Annual Reliability and Maintainability 
Symposium (RAMS), 1 6. https://doi.org/10.1109/RAMS51473.2023.10088259 

San Martin, G., Lopez Droguett, E. 2023. Quantum-Based Combinatorial Optimization for Structural Health Monitoring Applications 
(arXiv:2305.08738). arXiv. https://doi.org/10.48550/arXiv.2305.08738 

Shor, P. W. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on 
Computing, 26(5), 1484 1509. https://doi.org/10.1137/S0097539795293172 

Silva, G. S. M., Parhizkar, T., Droguett, E. L. 2022. Quantum Fault Trees. arXiv:2204.10877 [Cs, Eess]. http://arxiv.org/abs/2204.10877 
Speziali, S., Bianchi, F., Marini, A., Menculini, L., Proietti, M., Termite, L. F., Garinei, A., Marconi, M., Delogu, A. 2021. Solving Sensor 

Placement Problems In Real Water Distribution Networks Using Adiabatic Quantum Computation. 2021 IEEE International Conference 
on Quantum Computing and Engineering (QCE), 463 464. https://doi.org/10.1109/QCE52317.2021.00079 

Tan, Y., Zhang, L. 2020. Computational methodologies for optimal sensor placement in structural health monitoring: A review. Structural 
Health Monitoring, 19(4), 1287 1308. https://doi.org/10.1177/1475921719877579 

Zio, E. 2023. Quantum reliability analysis of a wireless telecommunication network. Proceedings of the Institution of Mechanical Engineers, 
Part O: Journal of Risk and Reliability, 1748006X231182455. https://doi.org/10.1177/1748006X231182455 

 
 
 


