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Abstract 

Over the last few decades, the increased availability and affordability of remote sensing equipment have opened the field for 
the implementations of sophisticated approaches to perform data-driven health monitoring in a wide variety of engineering 
systems. An industry sector where these advances hold the potential to cause a large impact is Structural Health Monitoring, 
mostly due to the high capital costs involved in the design and construction of structural systems, and the human risk 
involved in manual inspections. However, the scale and complexity of modern structural systems make it impossible to 
install sensors in all relevant locations within a structure. This limitation forces practitioners to select an optimal sensor 
configuration under certain criteria for fitness, giving rise to the problem commonly known as the Sensor Placement 
Optimization problem. Due to its combinatorial nature, this problem is impossible to solve exactly in practical situations, 
requiring the use of heuristic and metaheuristic approaches. While genetic algorithms and simulated annealing are examples 
of successful techniques used to find near-optimal solutions, the increasing size and complexity of structural systems 
motivates the exploration of novel alternatives. Quantum computing is an exciting field that offers a series of interesting 
approaches to solve combinatorial problems. However, their use and capabilities within the Sensor Placement Optimization 
context are currently underexplored. To bridge this important gap, this paper presents a novel approach to solve Sensor 
Placement Optimization problems by transforming the Modal Strain Energy criteria into a form suitable for quantum 
algorithms. Additionally, we provide an exploration of different training techniques for the quantum technique, in the hope 
that their results may inspire and guide future research in the area. Our experiments and approach are validated using a 
numerical modal of a Warren Truss bridge. 
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1. Introduction 

Within the field of Structural and Infrastructure Health Monitoring, one of the key challenges is the optimal 
placement of sensing equipment, a problem commonly known as Sensor Placement Optimization (SPO) 
(Hassani and Dackermann, 2023). The SPO problem can be stated as finding the best -out-of-  candidate 
locations to place sensors within a system, in accordance with some criteria for fitness. In structural engineering, 
the candidate locations usually coincide with the degrees of freedom of the structure. The SPO problem is a 
combinatorial optimization problem that scales exponentially with the size of the structural system. For that 
reason, it is considered intractable in practical situations, requiring practitioners to rely on heuristics or meta-
heuristics approaches to obtain suitable solutions. Common approaches used in existing literature have included 
genetic and evolutionary algorithms as well as simulated annealing (Ostachowicz et al., 2019; Tan and Zhang, 
2020). However, the increasing size and complexity of structural systems motivate the exploration of novel 
approaches that can find near-optimal solutions in scenarios where an exceedingly large solution space  
exists.  

Over the last few years, quantum computing has attracted the interest of researchers and practitioners alike 
due to its potential to solve challenging tasks more efficiently than classical computers. In this regard, a 
promising application is quantum-based combinatorial optimization (Heng et al., 2022). While a wide variety of 
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approaches exists within quantum computation to solve optimization problems, the most promising one is the 
Quantum Approximate Optimization Algorithm (Farhi et al., 2014), or QAOA for short. The reasons for this are 
threefold. First, QAOA is meant to be executed on a gate-based quantum device, a universal architecture that is 
expected to be the predominant hardware implementation in the near future. Second, it has attracted considerable 
attention since its discovery in 2014; nowadays multiple variants and modifications of QAOA exist to solve a 
wide range of different optimization problems (see (Blekos et al., 2024) for a complete review). Finally, the 
QAOA can be categorized as a meta-heuristic technique and consequently can be used in any binary 
optimization problem with an objective function that accepts a quadratic formulation.  

remains 
unexplored. There exists a large gap between the novel approaches heralded by quantum computing theory and 
their application to practical problems in Structural Health Monitoring (SHM). One of the few examples of such 
an application is given by Speziali et al. (2021), who applied quantum annealing to find a near-optimal sensor 
configuration in a water distribution system. everal pieces are missing to bridge this 
relevant gap. First, the QAOA is designed to find optimal solutions for Quadratic Unconstrained Binary 
Optimization problems, and most, if not all objective functions used in structural SPO do not have a quadratic 
form. Second, there exists a lack of common ground between traditional quantum computing research and 
applied fields, such as structural health monitoring and reliability. Finally, the QAOA presents multiple design 
choices, and general guidelines for these types of decisions have not been studied within the context of structural 
health monitoring.  

Following up on our previous work in the area and , this paper attempts to 
bridge the aforementioned gap by presenting three main contributions: 

1. 
instance in order to solve it using the QAOA approach.  

2. A math-based explanation of Quantum Computing theory, prioritizing a functional point of view centered 
on what a quantum computer does and how it can be used to perform practical engineering computation. 

3. The exploration of different training approaches for the QAOA with the objective of guiding the 
community towards future developments. 

This article is structured as follows: Section 2 provides a concise introduction to SPO theory within a 
structural context, with a particular focus on the Modal Strain Energy criteria and how it can be transformed into 
a QUBO instance. In Section 3, we offer a brief yet comprehensive introduction to quantum computing theory, 
emphasizing a mathematical explanation while avoiding quantum mechanics wherever possible. Section 4 
presents the theory behind the QAOA approach, detailing its implementation in a quantum computer simulator 
and its application to solving the SPO problem. Section 5 validates the proposed approach using a case study 
involving a Warren Truss bridge numerical model. Finally, in Section 6, we provide concluding remarks with a 
focus on outlining research avenues that we believe hold promise for future exploration. 

2. Sensor placement optimization in structural engineering 

Most SHM strategies rely on the common hypothesis that changes in the dynamical properties within a 
structural system are highly correlated with the presence of degradation. As such, damage is usually detected by 
comparing the dynamical characterization of a given system against a healthy baseline constructed at the 
beginning of the s  

The main dynamical properties of a structural system are summarized in its mass, damping, stiffness, and 
modal shape matrices, all of which can be easily obtained using finite element analysis, even for large-scale 
structures. Given the relevance of detecting changes in these dynamical properties for the characterization of the 
health state of a structural system, most SPO strategies focus on positioning sensors in locations where a large 
amount of dynamical information can be measured.  

A commonly used criterion in SPO is the Modal Strain Energy (MSE) (Tan and Zhang, 2020) maximization, 
where the objective is to find a candidate sensor configuration  that maximizes the amount of elastic energy that 
can be sensed by the equipment installed in the structure. Empirically, it has been found that configurations that 
capture a large amount of elastic energy correlate with higher signal-to-noise ratios, favoring the system 
characterization and therefore the detection of existent damage. 

Mathematically, the MSE captured by a given candidate sensor configuration  is given by (1), where  is 
the total number of degrees of freedom within the structure where sensors can be placed, is the i-th 
component of the j-th modal shape vector and  is the  component of the stiffness matrix . Formally, the 
candidate sensor configuration  is a collection of indices representing the degrees of freedom where sensors are 
proposed to be installed.  



   

(1) 

 

For reasons that will become evident in Section 4, when we describe the QAOA approach, we need to 
transform the MSE formulation presented in (1) into a Quadratic Unconstrained Binary Optimization (QUBO) 
formulation. To this end, first, we encode the candidate sensor configuration  into a binary vector   using the 
formula presented in (2), where the index .  

 

(2) 
 

Using this representation, we can rewrite (1) as a QUBO instance, presented in (3). 
 

(3) 

 

Equation (3) can be used directly as the objective function to find the optimal sensor configuration for a given 
structure. Formally, the problem we are trying to solve using quantum computing is described in (4), where we 
have included an equality constraint to indicate that we only wish to place  sensors in the structure, a common 
limitation in practice due to budgetary reasons. 

 

(4) 

3. Quantum computing background 

A quantum computer is a physical machine capable of creating, modifying, and measuring a quantum state. A 
quantum state, in mathematical terms, is a complex vector  of arbitrary dimensionality, where the ket 
notation ( ) is used for vector representation. The simplest possible quantum state corresponds to the case 

. In this case, the quantum state is commonly referred to as a quantum bit or qubit. The most general 
example of a qubit is the vector , where  and  are complex numbers. 

3.1. Forming quantum states 

A quantum computer is generally composed of several independent qubits, which can be combined together 
to form quantum states of larger dimensionality. Mathematically, the operation used to join qubits together is the 
Kronecker product operation ( . The result of applying this operation to a pair of qubits  and 

 is shown in (5). 
 

(5) 

 

Equation (5) shows that the result of applying the Kronecker operator to qubits  and  is a quantum 
state of dimensionality equal to four. By extension, the application of the Kronecker product to a set of  qubits 
results in a quantum state of dimensionality equal to . In this sense, the sizes of the quantum states that a 
quantum computer can hold are restricted to the powers of 2.  

Quantum states, like any other vector, can also be described as a linear combination using a set of basis 
vectors. The most common set of basis vectors used in practice is the set of unitary orthogonal basis vectors 
given by , where  is a unitary vector with a 1 in the i-th position and 0 otherwise. Using this basis, a 
quantum state can be written as: 

 

(6) 



   

This decomposition will become important later in this section when we describe how quantum computing is 
used to solve practical problems. 

3.2. Modifying quantum states 

A quantum state  can be transformed into a different quantum state  by the 
application of a unitary matrix  using the traditional rules of matrix multiplication from linear 
algebra. A unitary matrix fulfills that its inverse is also its conjugate transpose, i.e., . As a result 
of that, they are norm preserving, meaning that they preserve the norm of the vectors they operate on.  

Unitary operations can also be applied successively to a quantum state in order to generate multiple 
transformation steps, as shown in (7). 

 

(7) 

 

Notably, these unitary operations can also depend on external, user-defined parameters. These types of 
matrices allow for the encoding of external data into the quantum computer, such as the coefficients controlling 
an objective function of an optimization problem.  

3.3. Measurement of quantum states 

In the previous section, we reviewed how a quantum computer forms and modifies quantum states. Now, we 
turn our attention to how a quantum computer is capable of reading information from the quantum state.  

A fundamental rule of quantum mechanics states that the  complex coefficients that compose a quantum 
state cannot be read directly. Instead s the 
quantum computer to estimate the square norm of its complex coefficients. By performing a measurement, the 
quantum computer allows us to stochastically obtain one of the basis vectors  of the quantum state. The basis 
vector that is retrieved depends on the following probability distribution: 

 

(8) 
 

In other words, the probability of obtaining the basis vector  when performing a measurement operation 
over the quantum state is the squared norm of the corresponding complex coefficient. Equation (8) allows us to 
derive three important conclusions regarding the measurement of quantum states. First, the quantum state can be 
interpreted as a mathematical object encoding a categorical probability distribution over  elements, where  is 
the number of qubits used to form it. Second, while the measurement process facilitates the estimation of the 
squared norm of the complex coefficients of a quantum state (i.e., the probability of obtaining each basis vector), 
all the information contained in the real and imaginary parts is lost. Third, (8) provides a justification for the 
requirement of matrices in quantum computing to be unitary: these matrices preserve the norm of vectors upon 
which they are applied and, therefore, allow for the underlying probability distribution to remain valid.  

3.4. Quantum computing framework 

So far, we have reviewed the three main operations that a quantum computer can perform. However, one 
question remains: how can the quantum computer utilize these operations to solve a combinatorial optimization 
problem? 

The framework used by quantum computing to solve combinatorial optimization tasks is summarized in  
Figure 1. 

First, an initial quantum state  is formed using the Kronecker operation over  qubits. Then, 
each one of the candidate solutions of the original optimization problem is identified with one of the basis 
vectors of the quantum state. In general, quantum computers can easily generate an initial quantum state 
encoding a uniform probability distribution over all its basis vectors. Consequently, at the beginning of the 
computations, all solutions are equally suitable. In the following stage, the initial quantum state is modified by 
applying a series of user-defined unitary operations. This process effectively transforms the probability 
distribution encoded into the initial quantum state and often receives the name of quantum circuit design. In this 
stage, the objective function of the optimization problem is encoded into the quantum computer, using an 
approach called QAOA, which is described in Section 4. Finally, the quantum state,  that results 
from this transformation is measured, obtaining one of the basis vectors.  



   

 

 
Fig. 1. Framework used by quantum computing to solve combinatorial optimization tasks. 

These steps are repeated multiple times, allowing the estimation of the probability distribution encoded in 
. As such, a quantum computer can be summarized as a machine capable of altering categorical probability 

distributions over exponentially larger event sets. For the case of combinatorial optimization problems, this is 
very useful as the discrete set of feasible solutions can be directly identified with each one of the basis vectors. 
The goal is that during the quantum circuit design stage, the unitary operation applied to  generates a final 

objective function. 
In the following section, we will review how this unitary operation is formed using the Quantum 

Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014). 

4. Quantum combinatorial optimization: the Quantum Approximate Optimization Algorithm (QAOA) 

We begin this section by providing a brief physical motivation for quantum-based combinatorial 
optimization. As described in Section 3, a quantum computer is a physical machine capable of holding and 
modifying a quantum state. This quantum state is not a virtual object, but the actual physical state of the 
quantum computer itself. As such, it has all the properties that one would expect from a quantum system. In 
particular, it has an energy configuration that will tend to a local minimum if the system is left to evolve 
naturally. The general idea behind quantum-based optimization is to interpret the objective function 
and the set of candidate solutions rgy 
solving the original optimization problem can be thought of as 
its minimum (or maximum) energy state. In practice, we would expect the final measurement process to assign a 
higher likelihood to those solutions that are optimal or near optimal. 

(Crosson et al., 
2014), which roughly states that if a system is initially prepared in a minimum energy state for configuration A, 
and then is slowly transitioned towards configuration B, then the final state will correspond to a minimum 
energy state of configuration B. The main algorithm to implement this adiabatic evolution process in quantum 
computers is the Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014). A main 
shortcoming of the QAOA is that it is only designed to find near-optimal solutions for Quadratic Unconstrained 
Binary Optimization (QUBO) problems (Glover et al., 2019). However, as explained later in this section, we can 
slightly modify some components of the algorithm to allow the incorporation of constraints over the solution 
vectors.  

Figure 2 shows the QAOA quantum circuit diagram corresponding to the transition from configuration A to 
configuration B. First, an initial state is prepared by operation . This initial quantum state encodes a uniform 
probability distribution, assigning equal weight to all candidate solutions. Subsequently, a set of unitary 
operations referred to as the cost ( ) and mixing ( ) unitaries, are applied a total of  times to the initial 
quantum state. The cost operation  is the one that encodes the objective function of the original optimization 
problem and therefore represents the configuration B. The mixing operation  is a very simple matrix that 
represents configuration A. These unitary operations are parameterized by the set of tunable parameters 

, which control how fast should the transition from configuration A to configuration B occur. 
According to quantum computing theory, a high number of circuit applications  tends to correlate with finding 
better solutions for the original optimization problem.  



   

The performance of a particular configuration of the QAOA is not trivial to compute. The reason for this is 
that the output of QAOA is not a single solution, but a probability distribution over all the elements that 
constitute the feasible solution space. To this end, we first proposed the following performance metric for a 
single solution, denominated normalized performance, : 

 

(9) 

 

where and  are the MSE obtained by the worst and best feasible configurations, respectively. 
The normalized performance metric assigns a value of 1 for the best configuration and a value of 0 for the worst 
and unfeasible configurations. Using this formulation, we can compute the performance of QAOA by computing 
the expected normalized performance under the probability distribution generated by the quantum circuit, as 
described in (10). 
 

(10) 

 

where  is the probability assigned to the basis vector that represents the solution vector . 
 
In a practical implementation, the QAOA uses a quantum computer in tandem with a classical computer. The 

quantum computer is tasked with estimating the probability distribution generated by a particular selection of the 
parameter set , while the classical computer is used to compute the normalized performance and 
propose new parameter sets that hopefully march toward an optimum. Consequently, the QAOA can be 
interpreted as an algorithm that facilitates the transformation of an optimization problem over binary variables 
into one that depends now on a continuous set of tunable parameters. As such, we can employ a much wider set 
of techniques to find near-optimal solutions, including powerful gradient-based techniques.  
 

 
Fig. 2. Quantum circuit design of the Quantum Approximate Optimization Algorithm (QAOA). 

Nevertheless, the SPO problem that we wish to solve in this paper involves an equality constraint; see (4)). In 
practical terms, this constraint implies that the problem is no longer a QUBO. However, equality constraints can 
easily be incorporated into QAOA by modifying the initial state operator and mixing operation,  and , to  
alternative operators denoted in the literature as  and  (Brandhofer et al., 2022). These operators modify 
the behavior of the original QAOA algorithm, restricting the space of solutions that it can evaluate to only those 
that fulfill the equality constraint. For a more detailed explanation of QAOA, including how the unitary 
operations   and  are constructed from a series of basic unitary matrices, the reader is referred 
to our long-format paper on the topic (San Martin and Lopez Droguett, 2023). 



   

5. Case study: truss structural system 

Figure 3 shows the case study used to validate the proposed approach presented in Section 4, consisting  
of a Warren truss bridge numerical model. The 2D structural model consists of 18 identical elements  
of length , cross-sectional area , density ,  

. This configuration results in a structure with 22 degrees of freedom. Of these, only 18 are non-
supported and therefore represent valid candidate locations for sensors. The left and right supports restrict the 
movement in both its vertical and horizontal degrees of freedom. For all the experiments shown in this paper, we 
assume that  sensors will be installed in the structure. Thus, the total number of feasible sensor 
configurations is  

 

 

Fig. 3. Numerical model of the Warren truss bridge used as a validation example in this paper.  
Note that the number of candidate degrees of freedom is 18.  

Consequently, if  sensors are to be installed in the structure,  
and the total number of candidate configurations is  

The mass, stiffness, and modal matrices are obtained by applying the Finite Element (FE) methodology to this 
2D structure, using truss elements for each structural member (Ferreira and Fantuzzi, 2020). To validate the 
proposed approach, the case study is designed such that the SPO problem is solvable using an exhaustive search 
method. This enables the comparison of the solutions obtained with the QAOA against a true baseline via the 
normalization performance metric; see (10)). Table 1 shows the top 3 configurations in accordance with the MSE 
criteria. 

Table 1. Top-3 sensor configurations in accordance with the Modal Strain Energy criteria. Obtained using an exhaustive search approach. 

Solution Ranking Normalized Performance,  Sensor Locations [DOFs] 
1st  1.0 [4, 6, 14, 16] 
2nd 0.968 [10, 12, 14, 16] 
3rd 0.968 [4, 6, 8, 10] 

 
All experiments are performed using a quantum computing simulation environment executed on a traditional 

computer using PennyLane 0.33.1 (Bergholm et al., 2020) and Python 3.10.8. The workstation is equipped with 
an AMD Ryzen Threadripper PRO 3955WX 16-Core processor and 128 GB of RAM. The use of a simulation 
environment enables the execution of quantum computer algorithms without requiring access to quantum 
hardware. The focus is placed on examining the impact of two design factors: the number of circuit repetitions 
and the selection of classical optimization techniques on the outcomes generated by the (QAOA). To this end, 
we investigate values for  within the set . Furthermore, we optimize the parameter set  
from a starting point identified through the computation of a preliminary exploration of the optimization 
landscape and . The optimization is carried using two distinct algorithms: 
COBYLA (Larson et al., 2019), a gradient-free method, and ADAM (Kingma and Ba, 2014), which requires the 
computation of gradients. The code to obtain the results shown in this paper is available at (Gabriel San Martin 
Silva, 2024). 

 
 



   

Figure 4(a) shows the normalized performance achieved by QAOA under different values of  and different 
optimization techniques. The error bar indicates the standard deviation achieved after 5 optimization runs. From 
the figure, it is clear that COBYLA demonstrates marginally superior performance when a lower number of 
circuit repetitions is employed, while at higher values of , the situation is reversed. This phenomenon can be 
attributed to ADAM's proficiency in optimizing functions over a larger number of parameters (for example, in 
Deep Learning contexts). Despite these variations, the normalized performance does not exhibit a substantial 
increase with higher values of circuit repetitions, as was expected. This suggests a potential influence of the 
relatively modest size of the problem. The normalized performances generally fluctuate between 0.4 and 0.5, 
with the most favorable outcome observed when employing the ADAM optimizer with .  

While the results portrayed in Figure 4(a) may not immediately appear remarkable, it is important to 
remember that the QAOA does not return a single candidate solution, but rather a distribution over all feasible 
solutions. In practical settings, the QAOA circuit would be measured multiple times, proposing the best solution 
found as the near-optimal configuration. Consequently, an alternative metric to assess the quality of the solutions 
found by the QAOA is to compute the probability of sampling one of the top-performing solutions. As long as 
this probability is not negligible, executing the optimized QAOA circuit a reasonable number of times and 
preserving the best solution ensures that near-optimal solutions will be found. Figure 4(b) shows the probability 
of sampling one of the top 3% performing sensor configuration from the QAOA distribution under varying 
circuit depth levels and both optimization techniques tested. 

From the figure, COBYLA only significantly surpasses the performance obtained with ADAM for the 
smallest circuit tested, corresponding to . For all other cases, ADAM is able to achieve higher probabilities 
of sampling a near-optimal solution. The greater performance is obtained for the case , where ADAM 
achieves a 13.9% probability of sampling one of the top 3% sensor configurations. These results indicate the 
importance of assessing the QAOA performance under different lenses, as the normalized performance may not 
provide a fully comprehensive picture of its capabilities. 
 

(a) Normalized Performance metric for varying number of circuit 
repetitions. 

 
(b) Probability of obtaining one of the top 3% feasible solutions for 

varying number of circuit repetitions. 

Fig. 4. (a) Normalized performance obtained by the QAOA algorithm under different number of circuit repetitions  
using the COBYLA and ADAM optimizers. (b) Probability of sampling one of the 3% feasible solutions  

under different numbers of circuit repetitions using the COBYLA and ADAM optimizers. 

6. Concluding remarks 

This paper has proposed a novel approach to perform Sensor Placement Optimization in structural systems by 
leveraging the capabilities of Quantum Computing techniques. In particular, it applied the Quantum 
Approximate Optimization Algorithm (QAOA) to find near-optimal solutions using as an objective function a 
modified version of the Modal Strain Energy criteria. The  was validated using 
an 18-element Warren truss bridge numerical model. In particular, the number of circuit repetitions within the 



   

QAOA and the classical optimizer used to tune the parameter set were varied to derive practical 
design guidelines.  

The results clearly showed that for a high number of circuit repetitions, the optimizer ADAM seems to be a 
better option to find near-optimal sensor configurations. This result may be attributed to the fact that the ADAM 
optimizer was designed for training deep learning models consisting of thousands (or even millions) or 
optimizable parameters, and as such it seems like a preferable option for QAOA circuits where the parameter set 
is large. Additionally, the results outline the importance of testing the performance of QAOA using different 
metrics. For example, even when the normalized performance metric did not show remarkable results for the 
QAOA approach, a closer look at the probability of sampling near-optimal solutions reveals that the proposed 
methodology is capable of producing high-quality solutions in non-trivial instances. 

Regarding future research paths in the area, it is the authors  opinion that there is a need for developing new 
Quadratic Unconstrained Binary Optimization (QUBO) formulations for existing problems in infrastructure and 
structural health monitoring to allow their exploration using quantum-based optimization techniques. 
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