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Abstract 

In this paper, we propose and investigate the performance of two novel shrinkage estimators for bioburden density estimation 
in planetary protection. The estimators are based on the regularized differentiation of a cumulative count of colony forming 
units collected throughout the data collecting session or the life cycle of the entire mission. The regularized differentiation 
recasts the problem of bioburden density estimation as a linear least squares problem. The least squares problem is then 
solved through regularization techniques, such as truncated singular value decomposition and penalized least squares. The 
regularization is necessary to avoid noise amplification during the differentiation of noisy data. 
It is shown through computer-simulated data that the regularized differentiation based on ridge regression has the smallest 
mean-squared error among all estimators. The analysis of shrinkage mechanism implemented by regularized differentiation is 
performed, and it is shown that the regularized differentiation amounts to performing a weighted averaging of all the samples. 
The weights are determined by the regularization parameter automatically selected by the L-curve technique. Since the 
method of least squares makes no distributional assumptions about the data, it presents an attractive technique for bioburden 
density estimation when there are concerns about the misspecification of the distributional model. The paper concludes with 
the analysis of the bioburden data collected during InSight mission and directions for future work.  
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1. Introduction 

The primary objective of forward planetary protection (PP) is to minimize the inadvertent microbial 
contamination of other planetary bodies via hitchhiking microbes on robotic spacecraft sent to these planetary 
bodies. To manage and track the bioburden density and total bioburden throughout the life cycle of the entire 
mission, PP engineers maintain a PP equipment list, which tracks the surface area, related bioburden, and overall 
assembly hierarchy of each spacecraft component, subsystem, and system. 

Traditionally, an estimation of bioburden density and total microbial bioburden for biologically sensitive 
interplanetary missions has been performed with statistical tools such as maximum likelihood estimation 
(Beaudet, 2013). Recently, the Bayesian approach has been suggested as an alternative to deal with zero-inflated 
datasets and high variance of maximum likelihood estimates (MLE) for small sampling areas (Gribok et al., 
2019, 2020, 2022; Benardini et al., 2020). The Bayesian approach allows the user to deal effectively with zero-
inflated data and reduce the variance of the estimates by the virtue of shrinking it toward a prespecified target 
value, for example, the average value of the sampled data. Despite these advantages over the maximum 
likelihood estimator, the Bayesian approach nevertheless relies on an assumed model of a data-generating 
mechanism. Having an estimator which does not assume any specific data-generating model is advantageous as 
it can be used for different distributions of the data and different noise models. The maximum likelihood and 
Bayesian estimators are effectively parametric methods while model-independent techniques are non-parametric.  

In this paper, the problem of bioburden density estimation is reformulated as a linear least squares (LS) 
problem of differentiating cumulative counts of colony forming units (CFUs) collected during a data sampling 
session. The LS approach makes minimal assumptions about the data and does not depend on a particular 
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probabilistic model. Hence, it presents an attractive alternative to the parametric techniques. We propose and 
validate performance of two least-squares-based estimators. 

2. Data collection, processing, and simulation  

To validate the performance of the proposed techniques, both computer-simulated and InSight mission PP 
verification datasets were used. For the InSight data, a single component #261 has been selected for this paper. 
The component has been sampled 24 times with cotton swabs during two separate data collection sessions. A 
single swab data sampling covered the area of 0.0025 m2. Each individual swab was considered a sample. 
Having been processed in the microbiology laboratory, the samples were deposited in petri dishes and covered 
with tryptic soy agar. For swabs, only 80% of the total sample solution was deposited into the dishes, thus 
producing a pour fraction of 0.8 that was taken into account by reducing the surface area sampled which is 
referred to as exposure in this paper. For the purpose of the analysis presented in this paper, the raw data for each 
sample were represented by pairs (xi, Ei), i = 1,2,...,N, where xi is the number of CFU counts for the i-th swab 
sample, Ei is the exposure calculated as the area covered with a swab multiplied by the corresponding pour 
fraction, and N is the number of samples collected for the component. The computer-simulated dataset was 
generated using the gamma-Poisson compound distribution model described in detail in Gribok et al. (2019, 
2020, 2022) and Benardini et al. (2020).  

3. Frequentists and Bayesian inference for bioburden density estimation 

Prior to finding the bioburden density, a few assumptions about the CFU counts are commonly made when 
sampling a component: 

 the probability of finding a CFU on any specified small exposure area is proportional to the exposure 
area and does not depend on where that exposure area is located. In other words, the bioburden density 
does not depend on location; 

 the probability of finding more than one CFU on a given small exposure area is negligible in 
comparison with the probability of finding exactly one CFU on that area; 

 finding CFUs on disjoint exposure areas is a statistically independent event. 
If the above assumptions hold, the probabilistic model applied to the number of CFUs counts is a Poisson 

distribution with the probability mass function, 

,                                                                                           (1) 

where X is the random variable describing CFU counts, x is the actual number of CFUs found on the exposure 
area E, and  is the bioburden density or expected number of CFUs per unit of exposure, which is unknown and 
the subject of the statistical inference. If the observed CFU count is xi for a given exposure Ei, i can be estimated 
as 

,             (2) 

where N is the number of samples.  
This estimate is the MLE (Atwood et al., 2003) currently used by NASA to evaluate the bioburden density 

and total CFU counts for biologically sensitive missions (Beaudet, 2013). The MLE allows the bioburden density 
for each sample to be examined separately, and it has several desirable statistical properties. For example, MLE 
is unbiased in a frequentist sense and has minimum variance among unbiased estimators. However, it also has 
some shortcomings, such as large variance, and most importantly, for a small number of observed CFUs, it can 
overfit the data. It is also known that the MLE is inadmissible in case of Poisson distribution for N  3 under 
squared error function (Clevenson et al., 1975). Inadmissibility of the MLE estimator means there are estimators 
that are uniformly better, i.e., have lower mean-squared error (MSE) over the entire range of the parameter 
space. 

These shortcomings motivated the search for other estimators to calculate bioburden density, such as 
Bayesian estimators. Bayesian inference using the gamma-Poisson conjugate model will produce an estimator 
through (Martz et al., 1991) 



, ,                                                              (3) 

which is the mean of the posterior gamma distribution. In (3),  and  are the parameters of the prior 
gamma distribution of  with mean value , and B is called shrinkage factor. It is easy to see from (3) 
that for B = 0, the Bayes estimate is MLE, while for B = 1 the estimates are reset to the mean value of the prior 
distribution . Thus, the Bayesian inference through the gamma-Poisson model shrinks the MLE 
estimate toward the mean value of the gamma distribution. The gamma-Poisson models assume the Poisson 
distribution for the number of CFU counts once bioburden density  is selected from a prior gamma distribution. 

several advantages, such as not 
producing zero bioburden density estimates for components with zero CFU counts and often having a lower 
MSE with respect to the true bioburden density values. 

4. Differentiation of noisy data as a least squares problem 

Since the numerical differentiation of a noisy function is a well-known, ill-posed problem (Tikhonov et al., 
1977; Hansen, 1998, 2010; Engle et al., 2000), it cannot be solved by simply applying the operation of 
differencing to the cumulative CFU count. To illustrate the technical problems involved in the operation of 

ough the second fundamental 
theorem of calculus (Tikhonov et al., 1977). Specifically, for a given function f(x) with initial condition f(0)=0, 
its derivative (x) can be defined as 

                 (4) 

because 

.            (5) 

For example, the derivative of sin (x), which is a well-known cos (x), can be written as 

              (6) 

as it immediately follows that 

.           (7) 

The innocuous (4) reveals an often-overlooked fact that finding a derivative, by definition, always requires 
(implicitly or explicitly) solving an integral equation. In this equation, the derivative (t) occurs under a definite 
integral with variable upper limit. While this is never a problem for analytically defined functions and 
experimentally measured functions, the solution of an integral equation presents a problem because its left-hand 
side is always contaminated with measurement noise as (4) becomes 

                (8) 

The function in the left-hand side of (8) is a noisy version of f(x) and v(t) is its 
derivative. In the framework of our problem, f(x)+  is measured cumulative CFU count, and (x) is bioburden 
density. For the sake of simplicity, assume that the noise is represented by a single high-frequency sinusoid with 

a  , a sin ( x). Finding derivative (x) requires differentiation of the left-
hand side of (8), 

.       (9) 

Equation (9) shows that the derivative of the noise-contaminated f(x) can be arbitrarily far away from the true 
derivative, (x) because the term a cos( x
a

covering the whole spectrum of the signal.  
The previous derivations demonstrate the problem of differentiating a noisy function in continuous domain. 

However, all experimental data are collected in discrete form; hence, it is preferable to conduct our future 
analysis in the discrete domain. The bioburden data are collected in the form of pairs of xi and Ei for i = ,N, 



where N is the number of samples in a data collection session. Having CFU counts xi for a number of samples N, 
we can form the monotonically nondecreasing cumulative count 

.         (10) 

Having obtained the measured cumulative count  and available exposure for each sample, the bioburden 
density can be represented through first-order differencing of the cumulative count 

.           (11) 

Notice that  obtained through (11) is mathematically identical to MLE shown in (2) as 
 which demonstrates that the MLE estimate is the first-order derivative of the cumulative count. 

Further, (4) can be rewritten in discrete form as a system of linear equations, 

            (12) 

where A is an (N x N) lower-unitriangular Toeplitz (has constant values along all its diagonals and all ones on 
the principal diagonal) integration matrix with all nonzero elements equal to one, i.e., 

.           (13) 

 is the (Nx1) vector of measured CFU counts containing Ctrue and noise ,  is an (Nx1) vector of 
unknown derivatives, i.e., bioburden densities, and N is the number of measurements. The integration matrix A 
amounts to application of the right end-point rectangle integration rule to bioburden density . System of (12) 
can either be solved with respect to , by direct inversion of matrix A, provided it is of full rank, or by the 
method of LS if A is rank deficient. In general, for a square matrix A, there are three possible options in 
resolving (12) with respect to : unique solution, infinite number of solutions, or no solution. The rank of matrix 
A determines which of these options is realized. If the rank(A) = r = N, then matrix A has full rank, and the 
system of equations is consistent.  
In this case, direct inversion of matrix A will produce a unique solution, 

,            (14) 

where E is the vector of exposures and  is a vector of bioburden densities. The second option is when the 
system of equations (12) is consistent; however, rank(A) = r < N. In this case, matrix A is rank deficient, and 
system 12 has an infinite number of solutions. In terms of augmented matrix, this situation can be described as: 
rank [A ] = rank(A) where [A ] is the augmented matrix obtained by adding column of  to matrix A. Since 
matrix A cannot be inverted and no exact unique solution can be obtained, we must look for an approximate 
solution which can be obtained through the method of the LS which minimizes the following functional with 
respect to  

           (15) 

The solution is obtained through Moore-Penrose pseudoinverse 
matrix and can be written as 

         (16) 

where  is Moore-Penrose pseudoinverse matrix, and E is the vector of exposures. For the 
case of infinite number of solutions, the LS method is used to narrow down a single solution with the smallest 
norm called the minimum-norm solution. The last case when system 12 has no solution also arises for matrix A 
being rank deficient; however, in this case, rank [A ] > rank(A), and the system is inconsistent. Nevertheless, 
the method of LS still can be applied to find an approximate solution which is also the minimum-norm solution. 
Notice that in the case of full rank, the direct inversion solution is identical to the LS solution since 

 
Integration matrix A is a lower unitriangular, and hence, it is invertible by the virtue of its determinant being 

equal to one and as such is different from zero. It also follows that the matrix is technically full rank, and the 
system of equations (12) can be solved exactly. However, in practice, there are two problems with applying 
direct inversion to the system of equations (12). The first problem is that the response variable  on the left-hand 
side of system 12, which represents the measured cumulative count, is noisy, and the exact solution will fit all 
the noise in  thus proving an overfitted solution for . This problem emphasizes the problem of overfitting for 



the MLE from a different perspective of the LS approach. Second, while A is theoretically full rank, it still can 
be numerically rank deficient or ill-conditioned due to its small singular values. In this respect, singular value 
decomposition (SVD) is a valuable tool in matrix algebra and theory of LS ( ). For a square matrix 
A, its SVD can be written as 

          (17) 

where  are the orthonormal matrices of left and right singular vectors respectively, while  is a 
diagonal matrix with singular values arranged in a decreasing order. Using the SVD, the LS solution can be 
written as 

         (18) 

where i are the singular values of matrix A. Equation (18) demonstrates the problem which may arise in the 
case of ill-conditioned matrix A. First, the solution is a linear combination of the right singular vectors vi of 
matrix A with expansion coefficients produced by the dot product of left singular vectors ui and a noisy 
cumulative count  divided by corresponding singular values i. A plot of five right singular vectors vi for 
integration matrix A (N = 24) is presented in Figure 1. 
 

 
Fig. 1. The right singular vectors # 1, 6, 12, 18, and 24 for integration matrix A (N = 24).  

The corresponding singular values are shown on top of each plot. 

As can be seen in Figure 1, the right singular vectors become progressively more oscillatory as the 
corresponding singular values are decreasing. As a result, the LS solution becomes more and more contaminated 
with high-frequency components causing data overfitting. However, even more important is the second 
observation that the expansion coefficient in (18) for each right singular vector is inversely proportional to the 
corresponding singular value. It means that the high-frequency components are more amplified than the low-
frequency components resulting in a highly oscillatory and unstable solution. The singular values spectrum for 
matrix A (N = 24) is shown in Figure 2.  

 

 
Fig. 2. Singular values spectrum of integration matrix A (N = 24). 



As can be seen in Figure 2, the singular values are gradually decaying, and while they never reach zero, the 
condition number which is defined as cond(A)= max / min can be high with max and min being the maximum and 
minimum eigenvalues of matrix A. 

The condition number is a very important matrix parameter as according to the classical perturbation theory 
( ), 

,          (19) 

where exact is the theoretically correct derivative and  is the measurement noise in the cumulative count. 

Inequality (19) demonstrates that the relative error in the LS solution,  , is bounded from above 
by the product of the condition number of matrix A  cond(A) and the relative measurement noise in the 
cumulative count, . Thus, the condition number determines the possible error in the solution of a LS 
problem, and for the large condition numbers, such an error can be significant. In case of N = 24, for example, 
the condition number of matrix A is just over 31, meaning that the error in the cumulative count is amplified 
more than 31 times while calculating the LS solution or MLE. It is important to point out that the straightforward 
or naive differentiation, by taking the difference of two subsequent measurements and dividing by the exposure 
between them, is mathematically identical to the LS solution. For this reason, we restrict ourselves to the LS 
analysis of the problem of differentiation.  

4.1. Regularized differentiation  

To contain noise amplification during differentiation of noisy data, several approaches have been proposed 
which fall under the category of regularized differentiation (Tikhonov et al., 1977; Hansen, 1998, 2010; Engle et 
al., 2000). Since the problem of noise amplification is caused by small singular values of matrix A, the idea of 
regularized differentiation is to prevent the small singular values and corresponding right singular vectors from 
entering the solution presented in (18). The most straightforward approach is to restrict the sum in (18) to the 
first k components corresponding to matrix  numerical rank. So, the truncated SVD solution (TSVD) is 
obtained by 

           (20) 

where k < N. The truncation parameter k can be selected by the method of L-curve which will be discussed 
below. Since not all singular values are used in the TSVD solution, the resulting matrix is obviously better 
conditioned thus producing a more stable approximate solution. The TSVD solution is a shrinkage estimator as it 
is evident that the norm of the TSVD solution is smaller than the norm of the LS solution simply due to the 
truncation of the last terms in the LS solution. While TSVD will produce a more stable and accurate solution, the 

. 
be obtained by replacing the LS functional in formula 15 with augmented functional which explicitly 
incorporates constrains on the solution 

         (21) 

where the first term measures the goodness of fit, while the second term measures the norm of the difference 
between solution  and the initial guess 0. The initial guess can be set to zero or any other values reflecting prior 
knowledge about the solution. The balance between the two terms is controlled by regularization parameter . 
The functional 21 is known as ridge regression (Hoerl et al., 1970), and its minimizer for a given  is 

    (22) 

with  

           (23) 

called filter factors. In (22) we used the following properties of orthogonal matrixes: 
. 

The filter factors are guaranteed to be no bigger than one and are functions of singular values  and 
regularization parameter . For  equal to zero, the ridge solution is reduced to the LS solution. For  set to 



infinity, the ridge solution is either zero or set to the initial guess . As can be seen from (22), each component 

of the LS solution represented by  is multiplied by a filter factor fi which is smaller than one. However, 
for large singular values, the filter factors are very close to one; while for smaller components, the filter factors 
are getting smaller, and thus those components have a smaller influence on the regularized solution. Since each 
LS component is multiplied by a value smaller than one, the ridge solution is also a shrinkage estimator with 
respect to the LS and hence with respect to MLE. For TSVD, the filter factors are just ones for i = 1:k and zero 
otherwise. 

A very valuable tool to analyze the shrinkage mechanism of the ridge solution is the resolution matrix which 
can be expressed as 

.          (24) 

The importance of the resolution matrix lies in the fact that it maps the LS solution to the ridge solution 
because 

.    (25) 

Notice that for  = 0, the ridge solution becomes exactly the LS solution. The resolution matrix can be used to 
quantify the bias or regularization error of the ridge solution with respect to the LS solution as 

,        (26) 

where I is the identity matrix. From (26), it follows that the bias of the ridge solution is the deviation of the 
resolution matrix from identity. However, even more importantly is that the resolution matrix sheds light on the 
shrinkage mechanism of the ridge solution with respect to the LS solution. From (25), it can be seen the ridge 
solution is obtained by multiplying a square (NxN) matrix A# by a vector  of LS solution. It means that each 
component of the ridge solution is a dot product of the vector of LS solution and the corresponding row of the 
resolution matrix. Figure 3 shows rows of the resolution matrix for different values of regularization parameter 
corresponding to component 12 of the LS solution.  

 
Fig. 3. The row of the resolution matrix A# (N = 24) corresponding to component 12 and different values of the regularization parameter. 

As can be seen in Figure 3, for  = 0, only single LS component # 12 contributes to the ridge solution since in 
this case the resolution matrix is an identity matrix. However, as , more and more components 
of the LS solution start contributing to the ridge solution thus making each component of the ridge solution a 
weighted sum of all LS components. Also notice that the samples closest to the sample in question are weighted 
more heavily than the more distant samples. This reveals the shrinkage mechanism of the ridge solution as a 
weighted pooling when a single LS estimate is replaced by a pooled estimate from all LS components with 
different weights. Since component 12 is the middle component for the 24-components solution, the weighting is 
symmetric, and components that are closer to component 12 are weighted more heavily than the distant 
components.  

5. Performance of different shrinkage estimators 

The performance of the regularized differentiation has been evaluated with respect to other shrinkage 
estimators proposed in the literature as well as against MLE. A recent review of such estimators used for 
simultaneous estimation of Poisson parameters can be found in Gribok et al. (2022). For this paper, we selected 



three of the most known shrinkage estimators used for Poisson parameter inference: Empirical Bayes estimator 
with Jeffreys prior (Jeffreys, 1946; Martz et al., 1991), Empirical Bayes estimator with gamma prior parameters 
selected by the method of moments (MOM) (Berger, 1985; Martz et al., 1991), and the Clevenson-Zidek (CZ) 
estimator (Clevenson et al., 1975). The MLE and CZ estimators are frequentist estimators. For regularized 
differentiation, we used both TSVD and ridge solution with truncation parameter and regularization parameter 
selected by the method of L-curve (Hansen, 1998, 2010). The method of L-curve is a plot of the solution norm 

 against residual norm as a function of regularization parameter or truncation parameter . 
Such a plot often exhibits a distinct corner at parameter value  that provides an optimal balance between fitting 
the data and shrinking the solution. 

The performance of the shrinkage methods was first investigated through computer-generated data using 
gamma-Poisson data-generating model. As has been reported in an earlier publication (Gribok et al., 2022), eight 
components from InSight mission data were fitted with a gamma distribution that reflects the sample-to-sample 
variability of the data. The parameters of the fitted g -4, with 

to 176 CFUs/m2 5 CFUs2/m4. Having fit the data, the gamma 
distribution was used to generate vectors of 
Poisson variables for a given exposure. In this paper, the swab exposure has been used for all generated samples. 
The MSE between estimates of bioburden densities produced by each estimator and true bioburden density 
generated from gamma distribution was then calculated to quantify the accuracy of the estimators. This process 
has been repeated 100 times to quantify the uncertainty of each estimate.  

The MLE has been calculated according to (2) while the Bayes estimator with Jeffreys prior and MOM prior 
were calculated according to (3) with Jeffreys prior proportional to  and prior gamma distribution 
parameters selected by MOM for Empirical Bayes.  

One of the most popular simultaneous estimators for Poisson means is the CZ estimator which is expressed 
component-wise as 

.         (27) 

It shrinks the MLE estimate toward zero with parameter 0    N  1. The parameter is selected 
empirically. Fortunately, the performance of the CZ estimator shows weak dependence on the parameter. In this 
study, it was set to 12. Notice, for large values of , the estimator is close to the MLE, and for a single sample, it 
is reduced to MLE. The MSE for different estimators along with 95% confidence intervals (CI) is shown in 
Figure 4.  

The estimators were also tested using InSight data from component 261. Twenty-four swab samples were 
collected during two separate sessions on May 20, 2014 and July 10, 2017. Since in this case, the true bioburden 
density is unknown, the quality of the estimation can only be inspected qualitatively. Figure 5 shows the original 
raw cumulative count along with smooth cumulative counts obtained with the shrinkage estimators. The smooth 
counts have been obtained by integrating back the bioburden densities obtained with different estimators.  

 

 
Fig. 4. MSE and 95% confidence intervals for six estimators. 



 
Fig. 5. Raw cumulative count and smooth cumulative counts produced by five different estimators. 

6. Discussion and conclusions  

The results for computer-generated data shown in Figure 4 demonstrate that Bayesian inference with Jeffreys 
noninformative prior has the largest MSE which is even larger than MLE. This can be explained by the fact that 
Jeffreys prior adds half a count to the measured data leaving exposure unchanged. With small exposure, similar 
to our computer-generated data with E = 0.002, half a count makes a difference driving the estimate up and for 
small values of bioburden density increasing the MSE. The performance of MLE and CZ are practically identical 
since, as can be seen from (27), the CZ is very close to the MLE for large values of . In this case, the 

shrinkage parameter  becomes small, and there is practically no shrinkage. For our simulated data, 

some  were indeed large due to the small exposure value. The TSVD estimator performed better than MLE and 
Jeffreys prior estimator and slightly better that CZ. The truncation parameter was selected for each simulation 
run, and the average parameter over 100 runs was 13. It means that on average more than half of the SVD 
components have been truncated and not used in the TSVD solution. The difference between TSVD and CZ 
estimators is statistically significant at the standard 5% significance level. Both estimators are shrinking the 
MLE toward zero; however, the shrinkage seems to be stronger for the TSVD solution. The two lowest MSEs 
are achieved for EB-MOM and the ridge estimators with ridge having the smallest MSE at 5% significance level. 
For both methods, the shrinkage factor B and regularization parameter  have been selected for each trial. The 
initial guess of 0, used for the ridge method, was set to the mean value of all CFUs counts collected for 24 
samples. Thus, in contrast to TSVD and CZ, both EB-MOM and ridge are shrinking the MLE estimates toward 
the 
techniques are different. While EB-MOM pulls each estimate toward the mean value of all measurements, the 
ridge does a more subtle weighted averaging when measurements that are closer to the current measurement 
contributes more to the current estimate. This makes it important prior to applying regularized differentiation to a 
set of CFU samples, to arrange the samples either in chronological order or in the order of their physical 
proximity. For a set of measurements, it is expected the samples that chronologically or spatially close to each 
other will have higher intercorrelation.  

The results shown in Figure 5 confirm some of the observations made for the simulated data. For example, 
using Jeffreys noninformative prior does lead to overcounting since the Jeffreys cumulative count is clearly 
biased upward with respect to the raw count. The EB-MOM fit seems to slightly over smooth the raw count 
while TSVD and CZ clearly overfit the raw count as they fit every data sample. This is the result of small 
truncation parameter and shrinkage parameter that are selected for the two methods. Ridge seems to provide the 
most reasonable fit to the raw cumulative count neither over smoothing nor undersmoothing it.  

Replacing the norm of the solution in (20) with a seminorm as  where L is a matrix approximating  
n-order derivative, we can shrink the solution to different functions such as linear, quadratic, etc., if such a priory 
information is available. 
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