
   

Advances in Reliability, Safety and Security, Part 3   
Association, Gdynia, ISBN 978-83-68136-15-9 (printed), ISBN 978-83-68136-02-9 (electronic) 

 
 

 

    

 
Review On Safety Assessment And Validation Methods  

Of AI Module In Railway 
Han Liu, Fei Yan, Yunlai Sun, Yiwei Zheng 

School of Automation and Intelligence, Beijing Jiaotong University, Beijing, China  
 

Abstract 

With the rapid development of AI, it has significantly impacted various domains, including railway transportation systems. 
Due to the stringent safety requirements of railway systems, the application of AI technology necessitates safety assessment 
and verification to mitigate risks. This paper first provides a detailed overview of safety assessment and verification methods 
for AI modules from three perspectives: testing-based methods, robustness evaluation-based methods, and safety assurance 
case-based methods. Subsequently, it illustrates the practical application of safety assessment and verification technologies 
for AI through the example of Intelligent Train Eye system. Finally, the paper summarizes the current challenges in ensuring 
the safety of AI modules and proposes three aspects that need attention in subsequent technological development. 
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1. Introduction 

1.1. Application of AI in the railway 

Since the 1980s, urban rail train control systems have progressed through various technological stages, 
including the fixed block system, quasi-moving block system, and moving block system. Given the rapid 
progress of AI technology, the development trend for urban rail transit is characterized by the integration of 
digitization, networking, and intelligence. Neural networks (NN), cloud computing, and 5G technologies are 
poised to play pivotal roles in the rail transit field, leveraging their respective strengths to address key challenges 
in the railway. 

In the field of railway transportation, the autonomous obstacle detection system for trains utilizes AI 
technologies such as image recognition and CNN to intelligently monitor and safeguard the clearances ahead of 
train movements. This allows trains to autonomously respond to potential obstacles, enhancing operational 
safety (Yu et al., 2018; He et al., 2021). Intelligent maintenance and diagnostic technologies employ various 
classifiers to analyze railway signal equipment, efficiently identifying subtle faults that can significantly impact 
system operations (De Bruin et al., 2016; Sun et al., 2022). In terms of intelligent scheduling, optimization 
strategies and virtual coupling method are employed to effectively address issues related to reduced operational 
efficiency caused by train faults (Zhang et al., 2022; Zhou et al., 2023). These approaches maximize operational 
efficiency to the greatest extent possible. Furthermore, the introduction of an integrated dispatch control solution 
aims to reduce human error rates in scheduling by leveraging big data and cloud computing technologies. This 
comprehensive solution seamlessly connects various components, using data-driven intelligent analysis to 
achieve real-time monitoring and adjustments of train operational states. This approach enhances the accuracy 
and efficiency of scheduling decisions. 

Overall, the application of AI in the field of railway transportation contributes to accident prevention, 
improved train scheduling, delay prediction and optimization of overall administration and operations. This 
serves to enhance the operational efficiency, safety, and reliability of the system. The introduction of these 
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technologies not only innovates the railway sector but also lays a strong foundation for advancing the 
transportation industry as a whole. 

1.2. Problems faced by railway application of AI 

The railway transportation system, being a safety-critical system, carries the potential for serious 
consequences and significant maintenance costs in the event of errors. Consequently, the safety of AI modules is 
directly linked to the risk and severity of incidents during system operation. Thus, the use of AI carries a series 
of concerns. 

AI systems are typically employed in environments where the complexity is challenging for humans to fully 
analyze and describe. They can autonomously learn rules without relying on manually generated representations 
of analysis, details, and intricate environmental conditions. Given that AI relies on extensive training samples to 
learn complex rules, challenges emerge when deploying AI in open environments, particularly when addressing 
non-distributed test samples. This challenge encompasses not only the performance of the model but also its 
robustness and the reliability in handling uncertainty, forming a comprehensive and intricate issue. The question 
of how AI technology and systems should be employed to ensure safety has not yet been addressed in mature 
international standards for functional safety. 

Additionally, from a safety perspective, research indicates that Deep Neural Networks (DNNs) are susceptible 
to adversarial sample attacks involving subtle perturbations to input samples, imperceptible to the human. Due to 
the lack of effective validation techniques for DNNs, model validation based on AI modules is typically confined 
to performance metrics on standardized test sets and end-to-end simulations in operational design domains. This 
imposes certain limitations on the assessment of model safety and robustness. 

Therefore, ensuring the safety of AI-based systems throughout their entire lifecycle is an urgent concern. 
Through an extensive review of relevant research, this paper categorizes three types of safety assessment and 
validation methods for AI modules, namely testing-based methods, robustness evaluation-based methods, and 
safety assurance case-based methods. The aim is to provide a thorough and comprehensive understanding for 
ensuring the overall safety of AI-based systems. 

2. Safety validation and testing methods of AI module 

2.1. Testing-based methods 

Before the deployment of AI modules, systematic testing is essential to identify potential defects in the 
system at an early stage. AI software testing encounters challenges due to the uncertainty, unpredictability, and 
randomness associated with AI applications. Traditional programs express logic using control flow statements, 
while NN autonomously learn their logic from extensive data, using edge weights and non-linear activation 
functions between different neurons to represent it. These differences set AI testing apart from traditional testing. 
Hence, the challenge in verifying the safety of AI systems lies in the inapplicability of traditional testing 
methods. 

Coverage-guided testing has shown some achievements in software defect detection (Huang et al., 2021; Xie 
et al., 2019). We approve that programs (software) with high testing coverage execute more source code during 
testing, resulting in lower chances of undiscovered software defects and increased safety. A new testing metric-
Neuron Coverage (NC) has been proposed in deep learning field (Pei et al., 2017), which guides testing by 
observing and calculating the activation of neurons in the neural network. Given a set of neurons N and an input 
test set T, NC is defined as the ratio of the number of activated neurons Nact to the total number of neurons Nall in 
the neural network. 

 (1)  

A new NC test metric was introduced by Ma L et al. (2018), considering the corner neurons and enriching the 
dimensions of testing considerations. Tian Y et al. (2018) proposed DeepTest, a tool for automatically generating 
test cases. This tool systematically explores different parts of DNN logic by generating test inputs that maximize 
the activation of neurons. Zhang M et al. (2018) proposed a deformation relationship based on GAN networks 
for automatically synthesizing images under adverse weather conditions. While coverage-guided testing has 
achieved certain research progress, the connection between coverage metrics and probabilistic assurance remains 
a topic of ongoing investigation (Huang X, 2021). 



   

Symbolic execution initially proposed by James C. King in 1976 (King, 1976). However, constrained by the 
solving capability of constraint solvers, symbolic execution technology did not develop until 2008 when Cristian 
Cadar designed the "execute-generate testing" technique. This approach involves first performing symbolic 
execution and then generating test cases based on the results of symbolic execution. Traditional symbolic 
execution involves executing a program on symbols rather than specific inputs and systematically explores 
program paths up to a given depth range (Cadar et al., 2008). However, DNNs are typically highly nonlinear. So, 
the methods for solving DNN systems are not yet complete. Additionally, NN consist of thousands of neurons, 
far exceeding the current capabilities of symbolic reasoning tools, posing serious scalability issues. Gopinath D, 
Wang K et al. (2018) proposes a lightweight solution. In cases of the network has no constraints, it utilizes the 
DeepCheck method to convert the network into an imperative program. Then, by inspecting the result of 
symbolic execution, it checks the coverage scope of the neural network, extracts an interpretation of the 
behavior. Additionally, Monte Carlo Tree Search (Wicker et al., 2018) can be used to test DNN system. This 
method and gradient-based search in coverage testing (Pei et al., 2017; Ma et al., 2018; Tian et al., 2017) both 
concrete execution. 

Subsequently, inspired by the Modified Condition/Decision (MC/DC) coverage standard, researchers 
proposed a hybrid execution technique known as Concolic Testing for the structural features and semantic 
information of DNNs (Sun et al., 2018, 2019). While Concolic testing is a powerful tool, it still faces challenges 
in dealing with the complexity of large programs and ensuring the effectiveness of generated test cases. 

Testing methods serve as a pathway to verify the safety of AI systems, with the primary focus on how to 
generate high-quality counterexamples that induce incorrect model outputs. Therefore, scholars consider various 
scenarios and boundary conditions, striving to thoroughly explore corner cases. These high-quality 
counterexamples can not only help researchers better understand the weaknesses of the model, but also provide 
developers with feedback on the network and improve the model. In the process of interpreting this feedback 
information, the interpretability of the model and testing activities becomes another focal point of research. 

2.2. Robustness evaluation-based methods 

Significant achievements and effects have been attained by DNNs in image classification. However, the 
output instability demonstrated by DNNs when confronting adversarial perturbations shows potential negative 
impacts on critical tasks in railway field, such as obstacle detection. This has raised concerns about its safety.  

The definition of robustness is that AI components output the same predicted labels for inputs within a small 
region (typically defined in a Lp-norm ball) (Huang et al., 2017). This signifies the defensive capability of model 
against disturbances and is a critical metric for evaluating system safety (Hampel, 1971). 

The classic approach is to transform robustness evaluation into a satisfiability problem (Katz et al., 2017, 
2018; Singh et al., 2019), which is solved by the SAT/SMT solver. The main idea of this method is to convert 
the robustness assessment problem into a logical expression. For a given input point x, varying the local 
perturbation distance  (constraint) and determining whether there exists a satisfiable solution under this 
constraint. The limitation of this method is scalability. As the size of Machine Learning (ML) models and input 
dimensions increases, solvers need to handle more constraints and variables. SAT/SMT solvers typically employ 
exhaustive search methods to find solutions, leading to increased solution times. Furthermore, this method can 
only provide binary conclusions, indicating whether there exists an adversarial sample within a certain range of 
input perturbation, without offering additional information about the robustness of the model. Theoretical 
foundations for transforming robustness evaluation into a local Lipschitz constant estimation problem are 
provided in Weng T W (2018).  
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Fig. 1. (a) Adversarial perturbation; (b) Flowchart of white-box testing. 



   

Adversarial attacks represent another commonly used method for robustness evaluation (Bai et al., 2021). 
Fawzi A et al. (2018); Moosavi-Dezfooli S M et al. (2016); Weng L et al. (2019) use gradient-based approaches 
to find adversarial samples, considering the computation of minimal perturbation distances. A larger perturbation 
distance indicates better local robustness of the model, but the search is often computationally expensive. As 
illustrated in Figure 1 (a), when the perturbation distance is greater than the upper bound distance, it implies that 
at least one sample with this perturbation has been misclassified by the model. Conversely, when the 
perturbation distance is less than the lower bound distance, any sample with this perturbation can be correctly 
classified.  

This method can also be extended to the global robustness level. Madry A et al. (2017) introduces the average 
adversarial risk, while Ruan W et al. (2019); Fawzi A et al. (2018) introduces the average minimal perturbation 
distance. Essentially, these methods use statistical approaches to assess the local robustness of individual input 
samples, ensuring that the model can still produce correct outputs when facing the worst-case perturbation for all 
inputs. However, this requirement is stringent, leading to a lack of generalization ability of the model. Similarly, 
it does not provide additional information about the model's robustness. Researchers have confirmed that 
practical NN are difficult to meet such stringent demands (Sinha et al., 2017). 

Considering the limitations of the above method, Mangal R et al. (2019) proposed a new concept
probabilistic robustness. Mangal R et al. argue that practical inputs for NN mainly originate from non-
adversarial probability distributions, obviating to focus on worst-case. Instead, it suffices to ensure that the NN is 
robust to at least (1 ) probability of the input distribution. Based on the concept of probabilistic robustness, the 
robustness of the model is assessed by Webb S et al. (2018) through considering the proportion of inputs 
violating specified system properties, providing an informative concept of how robust the model is. Wang B et 
al. (2021) evaluated the overall probabilistic robustness of a classifier by averaging the loss function over all 
possible input perturbation distributions. Zhao X et al. (2021) proposed the concept of probabilistic astuteness, 
which focused on the accuracy of model output and used operational profiles and robustness verification 
evidence to quantitatively evaluate model reliability. 

Methods based on robustness assessment are a classical approach to evaluating AI safety. Researchers 
concentrate on defining suitable metrics for robustness assessment and determining acceptable safety levels. 
Researchers aspire to acquire comprehensive information about the global robustness of models, but often face 
challenges such as input dimension explosion, long computation times. As AI applications become more 
widespread, there is a growing desire to obtain information about how safe the model is, enhancing the precision 
of AI model evaluations. 

2.3. Safety assurance case-based method 

While testing methods can identify vulnerabilities in AI algorithms, they are unable to traverse all paths 
within the program. Moreover, an excessive focus on internal program structures and implementation details in 
testing approaches may lead to the oversight of external factors' impact on the program. Evaluating AI modules 
through a singular testing method may inadequately reflect the safety of module. 

Among the standardization efforts to advance autonomous AI safety analysis and assurance, the Assurance 
Case (AC) is widely acknowledged by scholars as a pragmatic approach to ensuring AI safety (International 
Organization for Standardization, 2019; Underwriter Laboratories Inc., 2019). AC is 
argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a 

 (Denney et al., 2018). 
Goal Structuring Notation (GSN) (Kelly et al., 2004) and Claims-Argument-Evidence (CAE) (Bishop et al., 

2000) are two commonly used representations. GSN places greater emphasis on the hierarchical structure of 
goals, the dependency relationships of solutions, and their roles in overall system safety. CAE focuses more on 
logical relationships, emphasizing the logical coherence of arguments. A reasonable choice can be made based 
on the characteristics of the problem under analysis. 

Inspired by Bloomfield R et al. (2009), a safety assurance framework in the development process of ML 
models is established by delineating the lifecycle of ML models. It meticulously specifies the requirements that 
ML models should meet at each stage and point out the required proofs of effectiveness, evidence, etc. (Hawkins 
et al., 2022). Picardi C et al. (2020) provides detailed guidance on generating assurance artifacts supporting 
safety claims for specific systems at different lifecycles. It also completes the overall structure of the safety 
assurance framework, offering the necessary direction for executing these activities. 

Decomposing high-level system-level specifications into lower-level verifiable specifications understandable 
by ML models is challenging (Rahimi et al., 2020). A safety assurance case of pedestrian detection at crossroads 
in autonomous driving exemplifies this difficulty by translating the system-level concept of recognizing 
pedestrians into a ML-understandable safety requirement, such as "the generated bounding box must not exceed 



   

10% of the minimum bounding box capable of accommodating the entire pedestrian at any size" (Gauerhof et 
al., 2020). This formulation serves as a reference for subsequent researchers. Additionally, extensive research 
has emerged in areas such as creating safety arguments (Hawkins et al., 2011) and specifying data management 
requirements (Ashmore et al., 2021). Hawkins R et al. (2021) present a guidance on the Assurance of Machine 
Learning in Autonomous Systems (AMLAS), summarizing issues, assurance artifacts, safety requirements, and 
more encountered in the ML development and deployment process. The ML lifecycle is divided into six stages, 
with an innovative addition of "feedback and iteration" threads for each stage. When the safety requirements of 
the latter stage are not met, the previous life cycle stages must be re-examined based on the feedback 
information, or even that the ML requirements themselves must be reconsidered. 

The above assurance frameworks are all static AC. With the constantly update of ML components, fixed 
static assurance frameworks face certain limitations. Asaadi E et al. (2020) introduces the general framework of 
Dynamic Assurance Cases (DAC), which captures dynamic assurance metrics with the support of various 
evidence and safety risk management principles. It conducts safety analysis on the entire life cycle by combining 
static assurance artifacts and assurance metrics (Denney et al., 2015). Corresponding software for developing 
assurance caseshas also emerged (Calinescu et al., 2017). 

In recent years, there has been widespread attention on AC. The advantage of this method is to ensure that the 
ML model meets the given safety requirements throughout the entire life cycle by improving the rigorous 
certification framework. However, the semantic gap between "system requirements and component 
requirements" or "component requirements and data management requirements.", the challenge of how to 
generate data that satisfies relevance, accuracy, balance, and completeness requirements and how to understand 
the erroneous results during model testing and guide them to the insufficiently considered stage ahead are all 
difficult problems to be solved. Nevertheless, the outlook for development is promising. 

3. Application of testing and validation methods 

The Intelligent Train Eye (ITE) system shown in Figure 2 is a non-contact obstacle detection system with two 
operational modes. In the Level-Explore (LE) mode, the system lacks positioning capabilities, featuring only 
fundamental obstacle detection based on radar point clouds and image deep learning models. In the Level-High 
Precise (LH) mode, the system incorporates location functionality based on high-precision maps.  

 

 
Fig. 2. The operational diagram of the ITE system. (Light Rail Vehicle System, 2020) 

3.1. Black-box testing 

The functional requirements achievable by ITE can be broadly categorized into three aspects. Firstly, in LH 
mode, obstacle detection relies on high-precision maps and logical maps, enabling train obstacle detection up to 
300m, small obstacle detection up to 50m, and pedestrian obstacle detection up to 120m.  

The second aspect involves autonomous high-precision positioning, achievable only in LH mode. This 
functionality should exhibit positioning errors 10cm across various terrains. Lastly, in LH mode, the ITE 
system is expected to accurately identify signals within the range of 5-70m in front of the train. Simultaneously, 
the signal's position, ID information, and color details should be detected. This test mainly uses the equivalent 
partitioning method combined with the boundary value method to design test cases. 

The conclusions of the black-box test of the ITE system are as follows: Firstly, the ITE system accurately 
performs obstacle detection in various scenarios. However, occasional abrupt changes in obstacle detection 
distance occur when the train is running at high speed, indicating a need for improvement in this aspect. 
Secondly, the positioning accuracy of the train meets requirements in various scenarios, with occasional 



   

hardware issues that should be addressed. Lastly, concerning signal recognition functionality, the ITE system 
fulfills the requirements of the system design for each test case. 

3.2. White-Box testing 

The obstacle detection function in LE mode is implemented using a deep learning model. Therefore, white-
box testing methods will be used for testing. This method helps comprehend how the system operates internally, 
identifying performance bottlenecks, and suggesting optimizations. In contrast, black-box testing lacks this 
detailed analysis. 

The process of white-box testing is shown in Figure 1 (a). Considering the specific functional requirements of 
the ITE system's obstacle detection, the following evaluation metrics are selected: Leak Detected Rate (LDR), 
Mistakenly Detected Rate (MDR), Mean Average Precision (mAP), Recall Rate, Precision Rate (Precision), 
Frames Per Second (FPS), Code Conformity, and Code Vulnerabilities. The research plan for deep model testing 
involves six steps: (1) Testing with the original dataset; (2) Dataset augmentation and image transformation; (3) 
Neuron coverage testing; (4) Sensitivity of the model to injected faults; (5) Optimizing the testing dataset; (6) 
Analyzing result. 

In white-box testing, to assess whether LDR and MDR can meet the requirements, our paper utilized a dataset 
of 35,720 consecutive images fused with LiDAR data. There were 798 frames with trains, resulting in 10 frames 
of false positives and 7 frames of false negatives. The detection outcomes are presented in Table 1. 

Table 1. Testing result of LDR and MDR. 

Metric Result 

LDR 0.0087719 

MDR 0.00028635 

 
Our paper established a test dataset by collecting video frames from the actual operation of trains. This 

dataset was used to evaluate the algorithm's mAP, Recall, FPS, and Precision. It consists of images with other 
trains, pedestrians, or obstacles in front of the train. The dataset comprises a total of 979 images with 
pedestrians, including 1170 instances; 4303 images with trains, and 634 images with obstacles. The resolution of 
the dataset is 1280*720. The test results, presented in Table 2, include Recall rate and Precision outcomes at an 
IoU threshold of 0.5, with results obtained at a confidence threshold of 0.5. Following the testing process, all six 
metrics for the algorithm's functional implementation meet the required standards, demonstrating the correct 
functionality of the algorithm. 

Table 2. Testing result of mAP, Recall rate, FPS, and Precision. 

Metric Result 

mAP 0.9874 

Recall 

person 0.991845 

train 0.998486 

stop 0.995268 

Precision 

person 0.99357 

train 0.989975 

stop 0.956625 

FPS 26 

 
Finally, a code review is needed. The implementation of the obstacle detection deep learning code involves 

three main steps: model training, model encapsulation, and model deployment. Initially, for model training, 
Python code was utilized with PyTorch as the framework. The code adheres to Python Code-style conventions, 
meeting the specified requirements. The second step involves model encapsulation, where the trained model is 
converted into an ONNX model. Visual inspection confirmed the model's structure and accuracy match those of 
the PyTorch model, meeting the requirements. The third step, model deployment, involves converting the 
ONNX model into a TensorRT model, and ultimately deploying it using C++. The code adheres to the Google 
C++ code style and demonstrates minimal loss of accuracy. The code meets the specified standards. It has 
undergone testing using Pprof, valgrind, and QA, achieving a test coverage of over 90%, with no evident 
vulnerabilities. The code satisfies the requirement for correct implementation. 



   

After the above tests, it can be concluded that the obstacle detection function in LE mode meets the 
requirements and the test is passed. 

3.3. Safety assurance case of ITE system 

Applying the AMLAS method to the ITE system and introduce the first three stages in detail. 

3.3.1 Stage one: ML safety assurance scoping 

(1) ITE system description 
The ITE system is composed of data acquisition module, perception module and decision-making module. 

 Input: real-time video, point cloud data, high-precision map, IMU, MMU and other data. 
 Output: The three-dimensional position and attitude of the train, the signal status, the types and 

distances of all obstacles within a certain range ahead, and the alarm signals. 
(2) Environment description 
The system is installed on the front of the train to ensure the widest possible field of view and scan the track 

in depth. Trains run on underground tunnels or viaducts, and there are customized code signs, signals, contact 
lines and other trackside equipment.    

(3) Component description 
In LH mode, the ML component consists of an object detection algorithm, which is used to detect the type 

and distance of obstacles on the track section in front of the train, and use a bounding box to frame the detected 
obstacles. 

(4) System security requirements 
The system safety assessment method was used to identify 2 hazards of the ITE system. For each hazard, a 

number of safety requirements were defined as shown in the Table 3. 

Table 3. System Safety Requirement (SSR). 

Hazard1- When there are obstacles on the track, the system does not sound an alarm 

SSR1-The system should be able to detect train obstacles within 300m 

SSR2-The system should be able to detect small obstacles within 50m 

SSR3- The system should be able to detect pedestrian obstacles within 120m 

SSR4 The point cloud matching between lidar and high-precision map should correctly 
divide the track segments, and the error should not exceed 1.4m. 

SSR5 High-precision maps should cover the entire train line 

Hazard2- System false alarm 

SSR6- Train positioning accuracy must reach 10cm level  

SSR7- False positive rate should be below the specified requirements 

 
The safety requirements assigned to ML components are 1, 2, 3, and 7. SSR4 depends on the point cloud 

matching algorithm, SSR5 is related to the prior knowledge of system operation, and SSR6 depends on the train 
positioning component and has nothing to do with the obstacle detection ML component. 

3.3.2 Stage two: ML safety requirements assurance 

Based on the ML component system safety requirements defined in stage one, this stage obtains a set of 
component safety requirements suitable for ML component implementation and verification. According to the 
AMLAS guidelines, ML safety requirements (MLSR) include performance and robustness requirements. 

 The rationale for MLSR are as follows: 
MLSR1 is derived from system requirement SSR1. Similarly, SSR2-MLSR2, SSR3-MLSR3 are all based on 

project requirements. 
MLSR4, MLSR5 are derived from system requirements SSR1, 2, 3. MLSR9 is derived from SSR8. The 

above component-level requirements are proposed based on the "Artificial Intelligence Deep Learning 
Algorithm Evaluation Specification (2018)" and combined with the specific functional requirements of ITE 
system obstacle detection. 

MLSR6 is used to ensure the continuity of object detection. Lee J et al. (2022) mentioned that when detecting 
very fast objects, the application requires a high speed of 10 FPS or more, but for applications that detect slower 
objects, detecting objects at 2~3 FPS is sufficient. The video frame rate of the ITE system is 30fps. Considering 
the model deployment limitations, it is believed that the system can continuously detect objects in 5 frames. 



   

MLSR7 is used to ensure the sensitivity of target detection. Due to camera installation limitations, pedestrians 
may not be fully exposed to the camera's field of view, but they do exist in reality and should be detected 
(Hamnert et al., 2022).  

MLSR8-When encountering an obstacle that the module cannot recognize, the module should promptly alarm 
and guide manual intervention to avoid dangers caused by unknown obstacles or ML module detection errors. 

MLSR10 is used to ensure the correctness of components in the operating domain. 

Table 4. ML Safety Requirement (MLSR). 

Performance MLSR6- In the image sequence input from video, any detected 
object should not be missed by more than 1 in 5 frames. 

MLSR1- The component should be able to detect the train ahead 
within 300m, including minimum and maximum sizes. 

MLSR7- The ML component should log when a pedestrian's 
bounding box enters 50% or more of the detection area. 

MLSR2- The component should be able to detect small obstacles 
ahead within 50m, including minimum and maximum sizes. 

MLSR8 When the component recognizes an uncertain obstacle, 
an alarm should be issued in advance and the cause of the alarm 
should be communicated, so that humans can intervene in a timely 
manner. 

MLSR3- The component should be able to detect pedestrian 
obstacles within 120m, including minimum and maximum sizes. Robustness 

MLSR4-The LDR is less than or equal to 1%. MLSR9- The MDR is less than or equal to 1%. 

MLSR5-The precision of obstacle recognition is greater than 99%, 
and the mAP is greater than 90%. 

MLSR10- All input samples should meet ML performance 
requirements within the class scope determined in the operational 
domain. 

3.3.3 Stage three: data management 

Table 5. Data Safety Requirement (DSR). 

Relevance Completeness 

DSR1- Sample collection of key features should reflect the 
general situation in the country where the system will operate. 

DSR5- The data set needs to include all combinations of 
feature dimensions in the operating domain. 

DSR2- Images of areas outside the defined expected operating 
range should not be included in the dataset. DSR6- The data set must include situations without obstacles. 

DSR3- The format of each data sample should represent an 
image captured using sensors deployed on the train 

Accuracy 

DSR4- The data should include the main features to be 
detected. 

DSR7- All 2D boxes generated must be large enough to 
contain the entire obstacle. 

Balance DSR8- All generated 2D boxes do not exceed 10% of the 
smallest size box that can contain the entire obstacle. 

DSR10- The distribution between classes in each dataset 
should be reasonable. 

DSR9- All obstacles present in the data sample must be 
correctly labeled 

 
ML data requirements specify the relevance, completeness, accuracy, and balance of the data. Data 

requirements are shown in the Table 5. The rationale for MLSR are as follows: 
DSR1-Since different countries have different rail line layouts and environments, it is necessary to collect 

data samples of the general characteristics of the place where the system operates. 
DSR2 - Dataset collection should be restricted to the operational domain. 
DSR3- The sensor will provide image, depth and other information to the ML component in a specific format. 

Therefore, only information in this format should be used during model development. 
DSR4-Guarantee the validity of data collection. 
DSR5 - Ensure that the dataset includes combinations of features. 
DSR6-The ML components need to avoid false positives, so the dataset must include normal operating 

scenarios. 
DSR7-The 2D bounding box needs to be large enough to ensure that no obstacle is missed. 
DSR8-The 2D bounding box should not be too large, and it is necessary to ensure the accuracy of obstacle 

position recognition. (Gauerhof et al., 2020)  
DSR9- Ensure the validity of training data. 
DSR10-Avoid component performance deviation on different data. 
We consider components that meet all of the above safety requirements to be acceptably safe when deployed 

in a system. When safety requirements are not satisfied, a bottom-up inspection of each step can be carried out 



   

through the examination of development logs, validation logs, testing logs, etc. This approach imparts a degree 
of traceability to the testing and assessment results. In general, the safety assurance framework ensures that the 
safety assessment process for components is no longer isolated.  Meanwhile, a more comprehensive assurance of 
overall safety is achieved by combining various testing methods and evidence.  

4. Conclusions 

This paper introduces the safety assessment and verification techniques of AI module from three perspectives: 
test-based methods, robustness evaluation-based methods, and safety assurance case-based methods. The current 
research is relatively mature, but there is a lack of clear explanation of what standards the test or robustness 
indicators should reach when the system is in an acceptable safety state.  

Furthermore, the following issues also need to be considered by researchers: 
 In addition to paying attention to the final test results when testing the system, we should also focus on 

whether the test results exhibit a progressive logic based on variables such as distance, light, and 
obstruction. A safe system should avoid mutations, hopping behaviours. 

 Under the safety assurance framework, testing-improvement-evaluation can be combined to form a 
closed loop. Testing finds problems to guide system improvement. Evaluation process are used to judge 
whether the proposed improvement plan is effective, and then continue testing to discover more 
problems. 

 During the training of the ML model, attention should be paid to whether the training data matches the 
actual operating domain, whether the relevance, accuracy, comprehensiveness, and balance of the data 
meet the requirements, and corresponding proofs should be given. If the training data of the ML model 
does not meet the standards, it will be difficult to guarantee the safety of the system no matter how 
many safety tests and verification methods are used. 
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