
   

Advances in Reliability, Safety and Security, Part 3   
Association, Gdynia, ISBN 978-83-68136-15-9 (printed), ISBN 978-83-68136-02-9 (electronic) 

 

 

    
 
 

Using Pre-Change Operational Evidence  
For Predicting Post-Change Reliability,  

Given Prior Confidence In Fault-Freeness 
Robab Aghazadeh Chakherlou, Lorenzo Strigini 

City, University of London, London, United Kingdom  
 

Abstract 

For many systems, high confidence is required that they will never suffer an accident over an extended period of operation. 
Statistics of accident- or problem-free operation can give factual support for this confidence. But changes, to systems or to 
the way they are used, create problems for this part of dependability assurance. For instance, experience of safe operation 
before a design improvement should be still relevant for claims of safety after the improvement; but methods in current use 
do not show how much it should contribute to confidence in the latter. Thus quantitative assessment after changes may ignore 
(or instead overrate) large amounts of evidence, distorting decision making about system acceptance or evolution. To help 
with this problem, we extend previous work on integrating statistical evidence, from operation, with prior confidence, based 
on production and verification quality, that a design is free from design faults. Our extension also takes into account evidence 
of operation before the change, and confidence, derived from analysis, that a change did not degrade dependability. We apply 

the variables of interest, a serious difficulty in current use of Bayesian methods. We show: (i) that pre-change evidence can 
contribute substantially towards trusting the system post-change, especially while post-change experience is still limited; 
(ii) how this contribution depends on the strength of the analysis showing  that the change improves, or does not affect, 
safety, and on other parameters; (iii) the limits to the advantages that pre-change evidence can bring. 
 
Keywords: survival probability, software correctness, similarity arguments, conservative Bayesian inference, globally at least equivalent, 
field testing, safety critical systems, ultra-high reliability, no worse than existing system, proven in use  

1. Introduction 

Statistical evidence of correct, or of safe, operation of a system has an important role for demonstrating its 
reliability, or safety. E.g., for safety certification or licensing, for complex systems where the possibility of 
subtle design flaws is a serious concern, a claim of adequate safety is usually based on evidence of quality of 
development and verification, but is com  authorized to 
operate, the claim that it satisfies its safety requirements can be corroborated or refuted (sometimes dramatically, 
as, recently, for the Boeing 737 Max) by operational experience. Both forms of evidence can be combined 
towards quantitative safety claims via Bayesian reasoning (Atwood et al., 2003). However, for systems with 
stringent safety requirements, the feasible amount of operational testing is often not enough to make a strong 
contribution to the argument (Littlewood, 1993). We study how predictions for such difficult cases can take 
advantage of operational experience that is imperfectly related to the intended claim, because of intervening 
changes to the system or its use. 

Changes create a special challenge for statistical corroboration of dependability (safety, reliability, etc.) 
claims. Changes may concern the system's design or configuration, or its operational environment: e.g. the 
practices of its users, the physical environment where it is deployed, a broader system of which this is a 
subsystem. For brevity, we will say that a dependability claim applies to a context -- a system and its 
environment. Statistical arguments for dependability generally use data (amount of operation and number of 
undesired events) collected from operation (or operational testing) in the same context about which the 
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dependability claim is made: past observations should be a representative sample of what may happen in the 
future.  Some standards do address change. E.g., ISO 26262 on road vehicles (ISO, 2018) (part 10) deals with 
certifying subsystems for use in more than one system, a case of "different contexts" according to our definition, 
but does not address issues with possible reuse of statistical evidence. Others like IEC 61508 (IEC, 2010) 
practically forbid using data from a different context. This limitation avoids many unsound claims, but at a cost. 
Especially if a change is minor, or arguably a change for the better, data from the old context are indeed relevant, 
to some extent, to the new one. Forbidding their use implies, firstly, high costs: to support strong confidence in a 
system, one would need to repeat abundant operational testing after each change. The cost may deter statistical 
arguments (denying the assessors useful factual evidence on dependability), or deter useful changes. Secondly, 
this constraint may cause poor decisions. Consider a scenario involving choice between two systems: , which 
has accumulated abundant experience of safe operation, before undergoing a recent change; and , which has 
been recently developed and has no operational history. To discard 's pre-change experience as irrelevant 
would mean that, everything else being equal, we would trust a completely new system, , just as much as the 
one which was just updated after massive positive experience. This probably underestimates the evidence on 
favor of . The dual problem may occur with proven in use  arguments allowed by certain standards, e.g., part 
8 of (ISO, 2018), as substitutes for a complete safety argument, potentially leading to overly optimistic 
assessment. Finding how much weight to give, in a claim for dependability, to safe operation in a previous 
context, would avoid such paradoxical conclusions, as well as reduce the cost of re-assessing or re-certifying a 
system after a change.  

We extend here some recent literature about scenarios in which a new context is trusted, with some level of 
confidence, to be at least as safe as the previous one. This concept is common in reasoning about safety, e.g. in 
principles such as "globally at least equivalent" (GALE, or GAME in French) a requirement in some French 
laws for railway and road safety (Minister responsible for transport, 2021), and the claim of "substantial 
equivalence" (to an approved product) required by the U.S. Food and Drug Administration to allow a light-touch 
approval procedure for a new product (FDA, 2014). Similarly, hardware reliability claims are often based on 
testing under especially stressful conditions so that better reliability can be inferred for the intended conditions of 
use. All mentioned terms require that a changed or new system maintain or exceed the overall safety level of the 
previous system. The concerned agencies have guidelines (e.g., (Minister responsible for transport, 2022)) for 
analyses that support a claim of GAME/
question of how much that claim should weigh in trusting the changed or new system, once this a priori analysis 
is complemented by the necessary observations of the new system in operational testing/experience. This paper 
aims to answer this question. We borrow the phrase No Worse Than Existing System  (NWTES) (Littlewood et 
al., 2020) to refer to GALE-like statements about a post-change context. NWTES arguments are those that use 
NWTES claims, in situations like, for instance: a design fault has been corrected; a system has undergone a 
change meant to improve its safety, and/or it is deployed in its intended environment after stress-testing in a 
harsher environment; or a new feature has been added, with analysis showing that it has no effect on safety.  

The following Section 2 defines the scope and assumptions in this paper with reference to previous literature; 
Section 3 specifies the mathematical minimization problem addressed, notation used, and a theorem that solves 
this problem. Section 4 illustrates the relevant insight gained, using numerical examples. Section 5 discusses the 
relevance of the results and future work.  

2. Context, Related work, and contribution of this paper 

Given an analysis proving NWTES, one might think that for the purpose of inference one can just add the 
number of post-change demands to the pre-change ones. But (Littlewood et al., 2020) proved this to be an error, 
producing over-optimistic conclusions, unless there is 100% certainty about the NWTES property. A set of 
publications, cited below, showed how the actually feasible claims for the post-change context depend on the 
details of prior beliefs and the exact formulation of the NWTES claim. To our knowledge they are the only 
literature to address how a probabilistic assessment should account for the uncertainty about an NWTES claim. 

2.1. Measures of dependability; reliability-type measures 

We consider systems whose operation consists of (statistically independent) demands. Their reliability or 
safety is characterized by a constant "probability of failure per demand" pfd (Bernoulli trial). We use the term 
"failure" as a generic term for the unwanted events to be monitored and predicted (failures, accidents, dangerous 
system conditions, etc., depending on the focus of the analysis), since the mathematical treatment does not 
depend on the specific kind of event. 



   

A demand might be a flight, for an aircraft, a deviation of plant state from a safe envelope, for a plant safety 
system, a trip, for a vehicle, etc. Claims about the pfd of a system can never be stated with certainty: even 
systems developed with the best methods available may have unknown design faults; and no assessment method 
can give certainty. In view of this inevitable uncertainty, probabilistic requirements or claims about a system pfd 
can take various forms, including as follows. 

It is often required that the pfd do not exceed a stated upper bound, with a certain confidence. For instance, 
the pfd of this system in the stated operation conditions shall be at most  with confidence at least 90% . 

This common form of claim has a clear intuitive use, if confidence  is used in the sense of probability : it tells 
a decision maker that, with the stated probability, here 90%, the risk taken by operating the system is no more 
than it would be if the system's pfd were as high as the claimed upper bound, . Such a requirement matches 
the ethical requirement not to deploy a system without strong confidence that it does not have serious dangerous 
flaws. Several papers (Aghazadeh Chakherlou et al., 2022; Littlewood et al., 2020; Salako et al., 2021; Zhao et 
al., 2019, 2020) applied different mathematical form of NWTES arguments to assessing a confidence level in a 
required confidence bound on pfd.  But in assessing future risk, using the confidence bound as a proxy for the 
actual value of pfd may be over-optimistic. A confidence in a bound does not say what the pfd would be if it 
exceeded that bound (Littlewood et al., 1993). In the example above, the bare confidence claim says that with 
10% probability, the pfd may have any value, up to 1: on the next demand (say, flight of an aircraft) the worst-
case probability of accident is not  but .  

We note that we use the Bayesian meaning of the word "confidence", as a probability of the event of interest. 

observed if the true pfd m of confidence does not have the above 
useful implication. Confusing the two meanings may cause serious errors. 

This major drawback is avoided by setting a requirement on the mean pfd, which takes into account the 
probability, however low, that the real pfd is worse than a desired or anticipated bound. An advantage of the 
mean pfd is that it gives the true estimate of the risk of operating the system for one future demand, given that 
the true pfd is unknown but a distribution for it can be estimated. Furthermore, the probability of at least one 
failure over a few demands, say , is approximated conservatively (bounded above) by multiplying the 
expected pfd by . So, for instance, an air passenger (a test pilot), deciding whether to fly in a new type of 
aircraft would be well served by this measure for assessing what risk he/she is accepting in doing so. A recent 
paper studied NWTES arguments for expected pfd (Littlewood et al., 2020). The main downside of relying on the 
mean pfd to guide decisions is that this conservatism may be excessive when making predictions over many 
future demands: the actual probability of failures depends on the whole probability distribution of the pfd; using 
the mean as a simple proxy could deceive a decision maker into choosing a riskier option over a less risky one 
(Strigini and Wright, 2014). 

Sometimes, assurance is required for very large numbers of demands (amounts of operation). E.g., a decision 
may be needed about renewing a license to operate a system in widespread use (Bishop, 2022); for large 
passenger aircraft catastrophic failure conditions  must be so unlikely that they are not anticipated to occur 
during the entire operational life of all airplanes of one type  (FAA, 1988). In this case, the regulator  
authorizing the operation of such systems, or the companies operating them, need to assess a reliability function: 
the probability that the system will complete a certain amount of operation without ever suffering any accident. 
The contribution of this paper is to develop NWTES arguments for such reliability measures. 

 

2.2. Conservative Bayesian inference (CBI) 

We take a Bayesian approach: the reliability measures we calculate take into account uncertainty about the 
true value of the system's pfd, represented as a random variable. "Reliability" is the probability of not having any 
failure in a given number of future demands, as a weighted sum of the reliability values that would ensue from 
each possible value of the pfd. This is not the system reliability one would compute from knowing the true, 
unknown value of this system's pfd; it is an " reliability, given what one actually knows. It is higher 
than (or at least equal to) the reliability that would be calculated from the mean pfd (Strigini and Wright, 2014). 
We apply conservative Bayesian inference  (CBI), an approach to obviate the challenges for assessors (any 
individual or even group, such as regulators and experts in regulated companies, who builds or approves a 
Bayesian probabilistic argument.) in using Bayesian inference. Bayesian inference requires a complete prior  
distribution for the pfd, that must reflect prior beliefs justified by the evidence available. Such complete 
distributions are hard to construct and justify. The simplifications commonly adopted to avoid this problem may 
lead to dangerously optimistic predictions (Zhao et al., 2019). CBI addresses this concern by only requiring as 
inputs simple constraints (prior beliefs) on the prior distribution, such that they can be justified based on 
available evidence. These constraints determine a set of acceptable priors, and thus Bayesian inference from any 
given observation determines a range of predicted values for the objective function of interest. The worst value 
in this range is then the most pessimistic prediction compatible with the stated prior beliefs. 



   

2.3. Prior beliefs; the case of fault-free design 

We use the same constraints on the prior distribution used in some previous papers (recalled in Section 3.1 ): 
the prior beliefs for the Bayesian inference take the form of a confidence in an upper bound on the pfd. 
Specifically we study the case in which this bound is zero. A prior confidence in pfd=0 is  realistic in a frequent 
and important scenario: when the concern is failures due to design faults, because (a) if there are no such faults, 
the pfd is 0, for this category of failures; and (b) this prior claim is supported by evidence of competent attempts 
to avoid or remove such faults. This is evidence for a probability of the product being fault-free, hence of its pfd 
being 0 (Bertolino and Strigini, 1998).     

This case of prior belief in 0 pfd is more generally useful for illustration purposes, because it is simpler than, 
but for some practical scenarios a close approximation of, the more general case of a bound greater than zero 
(Strigini and Povyakalo, 2013). CBI with a prior belief in 0 pfd was previously applied to reliability-type 
predictions, but without change of context (Strigini and Povyakalo, 2013). We extend that previous result to take 
into account operational experience from before a context change, to remove the major problem mentioned, of 
having to discard such evidence even if extensive.  

3. Mathematical formulation, notation, and worst-case prior distribution 

3.1. Notation   

In our scenario, an initial context A is characterized by an unknown pfd, represented by the random variable 
. In A, failure-free operation has been experienced over a certain number of demands . A change to A, 

believed to improve pfd or leave it unchanged (a NWTES  belief), created context B, also with an unknown pfd, 
.  demands have occurred in context B without failures. If we ignore , a claim about  can be derived 

by previously published methods (Strigini and Povyakalo, 2013). But we wish to use , and the NWTES belief, 
towards improving this claim. Beliefs about the values of ,  are described by a joint probability density 
function (pdf). Before it is updated on the basis of the observed , , this is the prior joint pdf, . As 
noted earlier, specifying such detailed beliefs on a rational basis seems infeasible. We aim to help an assessor 
who specifies simpler, empirically justified beliefs (constraints defining a set of believable prior pfd 
distributions):  

 prior confidence in B being no worse than A (NWTES), represented by a probability  in(1): 
                    (1) 

where  ( ) is the probability associate to the area  the set of ( ) values  under, and 
including, the diagonal line in Figure 1. This confidence depends on the complexity of the system and 
of the changes, as well as the thoroughness of their analysis. The value of  would be informed by 
experience of how often the type of analyses supporting the NWTES claim have proven wrong, or right, 
when applied to similar systems and situations. The present paper is concerned with how this 
confidence, however strong or weak, must affect the estimate of risk for the new context. 

 prior confidence,  ( ), that the system is fault-free (Figure 1).  is achieved before any 
inference from operation of the product. E.g., safety-related standards such as (IEC, 2010) prescribe 
development and verification practices that depend on the required safety level: one has to conclude that 
the standard writers believe such practices to give some confidence of that safety level being achieved; 
to estimate  one could rely on some combination of (a) historical experience of pfd levels achieved in 
systems that are comparable in complexity, functions and /or development processes; and (b) controlled 
studies about efficacy of verification. We consider the case that such quality evidence is the same for A 
and B, hence: 

                    (2) 

We believe the case of  to be common, and thus worth studying first. E.g., adding an extra safety 
subsystem to a system usually justifies high confidence that safety has been improved: the change is simple and 
is analyzed with well understood techniques. It is true that historically such intended improvements have at times 
caused deterioration of safety, but these cases are rare. We would not be surprised if in many projects a claim of 

 could be argued. On the other hand, both the forms of evidence for  in point 2 above are often weak. 
Any finite amount of operation, say  demands, is inadequate to demonstrate a ;  is also limited by 
few systems being trusted to be indeed comparable to the present one; and experimental studies of the 
effectiveness of verification methods risk overestimating it: faults injected artificially might not be representative 
of real ones; real faults may be undetected in the experiment and unknown to the experimenters. 



   

We study the posterior reliability,  (  for brevity), of the system for  future demands in 
context B, after observing runs of  and  failure-free demands. 

Fig. 1. General form of prior distribution based on (1), (2) over the unit square. Each point  identifies an event . 
The probabilities   and  are associated to the point (0,0) and to the area . 

3.2. The minimization problem 

In the CBI approach, we seek the worst value for an objective function (reliability, in this paper), among those 
allowed by the stated prior beliefs (constraints on the prior distributions). That is, Bayesian inference on each 
prior distribution yields a value for the posterior reliability; Bayesian inference on every prior allowed by the 
constraints yields a range for it. We seek the worst value from this range. Mathematically, we find, among those 
priors, one (it may or may not be unique) that yields the infimum (closest lower bound) for that range of 
posterior reliability values.  For brevity we will call such a prior distribution a worst-case prior.  

In our case of Bernoulli processes, with likelihood function  , the posterior 
reliability is given by (3). We need to minimize expression (3), subject to the constraints in (1), (2). 

      (3) 

Our solution of this minimization problem relies on Theorem 1.  
Theorem 1: A prior distribution that yields the infimum of the set of posterior reliability values defined in (3), 

among priors satisfying the constraints in constraints in (1), (2), is a discrete three-point distribution with 
probability masses , , and , for the points of coordinates (0, 0), , 

, as illustrated in Figure 2b. Inference from observing  and  failure-free demands updates these 
probabilities. The coordinates ,  that give the lowest ( ) depend on the values of 
the parameters, including  and , and identify one of the patterns in Figures 2b to 2e. For the sake of brevity, 
we will sometimes call  the point with associated probability , etc, and will use these abbreviations when 
convenient:  for  and  for . Given Theorem 1, the worst-case 
posterior reliability can always be obtained from a discrete distribution as described, hence (3) takes the discrete 
form: 

(4) 

 

 

 

 
 

 
 

 

Fig. 2. (a) Discrete 3-point prior distribution satisfying prior beliefs in (1), (2); (b) to (e) show the four patterns of prior distribution (special 
cases of Fig. 2a) that may yield the lowest posterior reliability, , matching the four expressions given in the proof for ; (b) , (c) 

, (d) , and (e) . The dashed lines represent hypothetical values of ,  , ,which have a role in the proof outline. 

3.3. Outline of proof 

We recall (3) and constraints in (1), (2) as follows. The goal is to solve the optimization problem: 

subject to:   
where D is the set of those prior probability distributions for variables XA, XB (defined over the square 



   

) that satisfy the constraints in constraints in (1), (2). Within D, we seek a distribution that 
minimizes the posterior reliability (see (3)) for  future demands, given that no failures occurred over  and 

 demands in A and B, respectively.  
We proved that a prior distribution that yields the infimum for the posterior reliability must match one of 

the patterns shown in Figures 2b-2e . The patterns shown in Figure 2 encompass subsets (  of 
the [0, 1]  [0, 1] square:  for the point (0, 0), the rest of the square being divided into  above the 
diagonal (xB > xA),  for the lower triangle (xB  xA). The worst reliability is found through these steps: 
Step 1: We replace any given prior distribution with a discrete, 3-point distribution (Figure 2a) that yields the 
same posterior reliability. This determines a subset  that must contain a worst-case prior. An item within 

 is actually identified by the values of four variables:  (the co-ordinates of the points with 
probabilities M1 = 1   M2 =   ). For no item within  all partial derivatives of  w.r.t. all four variables 
are 0. Hence, the items representing the worst-case prior lies on a boundary of  in this 4-dimensional space. 
Step 2: We restrict the pattern in Figure 2a to 4 more specific patterns with ,  at the boundaries of the two 
triangles, above and below the diagonal. That is, when we optimize  by adjusting the positions of   in 
Figures 2b to 2e, we obtain four possible, distinct patterns for a worst-case prior distribution, with posterior 
reliability given respectively by (10), (11), (12) and (13). 
Step 3: We discard some of these candidate worst case patterns, by comparing the  values they yield. Which 
one is the worst depends on . 
Step 1: We rewrite (3) in terms of sums over , with , the three subsets of the  
square: 

(5) 

Using the "Mean Value Theorem for Integrals," we can, without changing , rewrite (5) as (6) with  
representing discrete probability masses in each region  of the unit square (Figure 2a). Recalling the shorthand 
notations ,   the posterior reliability can be written as: 

(6) 

where . Solving this equation system yields: 

(7) 
Step2: Step 1 gave a 3-point prior distribution (Figure 2a). The next step is to minimize  with respect to the 
positions  of the probability masses . As mentioned earlier,  occurs at a 
boundary of  . Different prior distributions result in different points on this boundary: the four patterns in 
Figures 2b to 2e. 

Substituting probability values from (8) into (6), we obtain a modified expression, . 

(8) 

To minimize , we study its partial derivatives w.r.t. the coordinates of . Solving  for :  

 identifies the horizontal line in Figures 2b to 2e, which separates two cases:    
(if  ), for which  is minimum when ; and  (if ), for which  is 
minimum when  is on the diagonal . If  then  does not vary with . Therefore, we 
substitute  or  into (8) yielding two distinct situations. For each, we study the derivative of  
with respect to . Similarly to the process used for , we obtain critical values  and  for which 

. Solving all partial derivatives ( , , , ), 
we end up with four different situations: 

 



   

So, to minimize ,   must be on the diagonal  (Figure 2b). The reliability is  in (9). 

(9) 

 

(10) 

 

In this case, to minimize , both  and  must be placed on the diagonal line (see (11), Figure 2d). 

(11) 

  ( ) and  ( ): Minimizing , requires  
(Figure 2e) 

(12) 

Step 3: Comparing these four possible expressions for , it is easily shown analytically that  , 
, and  for any values of the parameters. We could not prove a similar inequality between 

 and : which one yields the lower  value, hence , for given parameter values, can be checked on 
the numerical results. As an illustration, Figure 3 compares these four candidates for , for one set of values 
of , , , . 
 
 

Fig.3. Comparison of four candidates for . For the parameter values shown, . 

4. Results 

We illustrate the results about worst-case posterior reliability with the aid of numerical examples. In these 
examples, the values of  and  match a decision scenario in which there may be a large amount of 
previous, failure-free operation in context A; assurance is sought for a future amount of operation in context B, 

, comparable to the amount  already observed in context B. For these ranges of parameter values the prior 
distributions yielding the worst posterior reliability  have the form shown in Figure 2b, and the 
corresponding reliability is given by (9), in the proof outline. 

4.1. Improved reliability claims from use of operational experience from previous context 

Figure 4a compares the reliability  that can be conservatively claimed for context B without the aid of the 
evidence  from context A and with it (the former is calculated using the earlier results (Strigini and Povyakalo, 
2013), the latter from results in this paper). As expected, using  allows a claim of higher reliability, for any 
value of . E.g., when not using  ( ), for , , but with the same   

 for : the probability of future failures is almost halved. 
Conversely, using  reduces the amount  of operational experience in B needed for claiming a certain 

value of . Given high enough  and , sufficient confidence to operate in a new context can be obtained 
much sooner after a change. In Figure 4a, considering  halves the amount of operational experience in context 
B (  vs ) needed to achieve .  



   

There may even be situations in which  alone supports a claim of sufficient reliability after the change, 
requiring no operational experience  at all. Standards would still require some testing for context B; this good 
practice would support the claimed arguments for the values of  and . But the safety argument will not require 
operational testing meant to be statistically representative of future use in B. This decision criterion of not 
requiring statistics of operation in B if  is seen as large enough seems to be often applied informally, without 
probabilistic arguments, for changes considered small, or  
In our example (Figure 4a), a requirement of 85% reliability at  is satisfied on the strength of  
evidence alone: for  ,  (lower curve in Figure 4a), and for ,   
(  at most ). If , the worst-case probability of no failures in  demands is 
indeed  since, with probability ,  (failures are impossible),  but otherwise, the pfd  may be as high as 
1 (every demand causes failure). 

 

Fig. 4 Analyzing the impact of old-context evidence, , of  , and of  on conservative reliability claim  for context B.   
(a)  improvement with  alone vs using  as well.  (b) How  decreases according to which fraction of the operational experience 
predated the change.  (c) Effect of varying . (d) Effect of varying . (e) For high enough  , a high enough  compensates for lower value 

of  . (f) Decrease of  with .  In , , . 

We sketch an explanation of the effects seen in Figure 4a, without the mathematical detail provided in the  
proof outline, but accepting as proven that to find a worst-case prior it is sufficient to consider 3-point discrete 
distributions. 

Recall that in Bayesian inference: (1) the probabilities of events (here, of  points) are updated 
proportionally to their likelihoods (the probability of the observation , conditional on that event); here, the 
likelihood of  failure-free demands is maximum for ; the same applies to  and . (2) inference can 
be done in steps, each step applying parts of the evidence: we can first obtain a posterior distribution for  
on the basis of the prior and of the evidence , while assuming , and then use this posterior distribution 
as a one-dimensional prior distribution for , to obtain the posterior reliability in context B, . For this second 
step, previous results (Strigini and Povyakalo, 2013) show that a worst-case prior has non-zero probabilities for 
only two values of : zero, and a non-zero value (found by numerical optimization), as shown in Figure 5. 
 

Fig. 5: Posterior probability distributions that yield lowest . Inference from  updates the prior probabilities  of the three events 
to the posterior probabilities  and changes the worst-case co-ordinates of the three discrete probability masses.  

(a)      (b) ,       (c)        (d)  
  

For the parameter values in this example, the worst-case prior is given by Figure 2b. To help visualize how  
and  contribute to the posterior reliability claim, we observe that: 1) Without evidence from operation, i.e., for 

,  is computed directly from the prior distribution.  equals the prior probability  
(Figure 5a); 2) With , inference from  updates  to , hence increases  for any prior, 
and thus also the infimum  . This yields the lower curve in Figure 4a. The worst-case values of  are 



   

equal (Figure 5b) and decrease with increasing  (Strigini and Povyakalo, 2013); 3) We now consider the effect 
of  alone, with . This is complicated, but for large  values we can visualise it by just studying the 
limit behavior of  (with ). For  he posterior probability of any event with  tends to 0, 
and the posterior mass distribution tends to: , ,  
(Figure 5c). Analogously to the case of , now , and since , using  
improved . Note that this  value bounds the reliability that can be claimed for B before seeing operation 
of B; 4) With  large enough for the updated probability values  to be close to the limit values above, 
inference from  increases posterior reliability, starting with prior  
(Figure 5d); without considering , it would have started with a smaller . Hence the higher 
reliability curve in Figure 4a. 

4.2. Pre-change evidence vs post-change evidence 

Safety claims are sometimes based on the total amount of past successful operation, , ignoring 
changes of context. But evidence of operational success in the old context A must be somewhat discounted , 
compared to the direct evidence from the current context B. Figure 4b shows how a reliability claim must be 
reduced depending on how much of the favorable evidence comes from the old context A. This reduction is due 
to the limited confidence  in B being actually no worse than A. The figure also shows how 
higher values of   allow higher claims. 

4.3. Effects of parameters  and  

Using operational experience from A to estimate reliability in B is useful, but the extent of this benefit 
depends on the strength of the belief, represented by the probability  in context B being no worse than A.  

Figure 4c shows how  affects reliability for context B. The plots correspond to different value of , but the 
same value of . Higher values of  lead to increased reliability in context B. This should be expected: a higher 

-- greater confidence that B is no worse than A-- implies that evidence from A must have a stronger effects on 
our beliefs about B's reliability. 

Figure 4d shows instead the effect of , representing evidence common to both contexts. A higher  implies 
higher reliability (for any given ). This  holds for , and remains true throughout the plot.  

 increases both with  and with : thus, can a high enough  compensate for a lower value of , i.e., yield 
a higher  despite the lower ? This seems reasonable: a higher  means that successful operation of A 
contributes more to confidence in B. Figure 4e shows an example, with two plots with different values of  and 
:  and , with . For , a higher  implies higher 

reliability, irrespective of the value of . As  increases, though, the plot corresponding to lower  ( ) 
intersects and surpasses the plot with higher  ( ). This situation arises if .   

4.4. How posterior reliability decreases with  

Figure 4f illustrates some key points. Reliability of course decreases with increasing  (for any given values 
of  and ), but never reaches 0: it is a weighted sum of the probabilities of having no failures if  
(which is 1) and if  (which tends to zero as  increases). The probability of  is never reduced by 
observing failure-free demands. So, from (4), . The 
limit's worst value is  (  ), which is obtained when and  

move to (0, 0).  

5. Discussion, conclusion and future work 

We have extended a previous conservative reliability prediction method (Strigini and Povyakalo, 2013) by 
accounting for operational experience that comes in part from a previous context; and extended other previous 
work, on using pre-change evidence to assess pfd (Littlewood et al., 2020), to assessing reliability over multiple 
future demands. 

Essential observations are: (1) evidence of correct/safe operation before a change does contribute to reliability 
type claims about correct/safe operation after the change; (2) but this contribution is less than that from operation 
after the change, unless there is absolute certainty ( ) that the change was not a change for the worse; (3) 
the advantage thus produced is also limited: even an infinite amount of evidence from before the change would 
not, alone, allow claims of perfect reliability after the change, but only improve confidence in pfd=0 after the 
change, but prior to observing operation, from  to . 

Dismissing operational evidence from before the change would be over-pessimistic, while regarding it as 
though it were about the context after the change would be misleadingly optimistic. 



   

Our results may substantially improve the task of proving sufficiently low risk from systematic failures for 
operation of systems that: underwent changes (in the system or its use) after a long phase of successful/safe 
operation; require confidence of no failures occurring over large amounts of future operation; are subject to a 
wide range of uncertainty about their pfd; were thoroughly verified for absence of design faults. 

Some natural extensions of this work concern studying the posterior reliability under different forms of prior 
beliefs, as may be justified in different practical situations. Indeed, the previous studies cited in Section 2.1 
showed how the apparently simple natural language statement context B is no worse than context A  actually 
allows different mathematical meanings, that apply in different real-world situations, of which here we studied 
one. Worthwhile extensions of this kind include: (1) the generalized scenario in which there is confidence that 
the pfd is less than some non-zero upper bound. In this paper, we assumed a prior belief of fault-freeness: there is 
some confidence that the pfd is 0. Indeed this is an important case, as we argued, but a more general case is that 
there is confidence that the pfd is less than some non-zero bound, e.g., . While, for some values 
of the other parameters, assuming  gives good approximate results, for others the exact solution must be 
computed; (2) the other generalization in which the confidence in the pfd not exceeding this bound differs 
between A and B, as addressed in a similar scenario by (Zhao et al., 2020); (3) the form of NWTES belief that we 
defined (Aghazadeh Chakherlou et al., 2022) to cover design improvements for safety or fault-tolerance where 
the confidence in the change being an improvement holds independently of the actual value of the pfd before the 
change; (4) cases of : stronger confidence in the system being highly reliable than confidence in the latest 
change not having made it worse. 

Another important extension concerns successions of changes. Some systems evolve rapidly, e.g., currently, 
autonomous vehicles: the amount of operation between design updates would never give strong statistical 
support to safety claims, yet a rational way of accounting for all these amounts of operation collectively in a 
safety claim would be highly desirable. Last but not least, these methods need to be extended to the case in 
which the evidence includes some occurrences of failures. 
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