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Abstract 

This paper presents a comprehensive study on the application of artificial intelligence (AI) for the detection of driving styles, 
utilizing data derived from vehicle dynamics measurements. The research was conducted using an advanced driving simulator 
setup, which combined physical components of a vehicle's operating system with a virtual driving scenario. This approach 
facilitated the collection of detailed data from various proband groups, encompassing both human drivers and automated 
driving models. The experimental setup included a multifunction steering wheel, control levers, accelerator and brake pedals, 
and a force feedback actuator, all integrated into a simplified vehicle cockpit mock-up. Visual, acoustic, and kinesthetic 
feedback mechanisms were employed to provide a realistic driving experience. Data acquisition focused on driver interface 
signals, vehicle state signals, and traffic object signals, captured with high precision to reflect driving behaviors. The core of 
the study involved the extraction and analysis of features from the collected data and the employment of the TSFresh library 
and supervised learning algorithms, including Decision Trees, Random Forest, and Support Vector Machines (SVM). 
Hyperparameter tuning was a critical aspect of this process, ensuring the optimization of each algorithm despite the 
constraints posed by the limited size of the dataset. Our results demonstrate the efficacy of the employed algorithms in 
accurately classifying driver types, with a considerable level of consistency across different models. However, the study also 
revealed challenges, particularly the misclassification of specific driving patterns, underscoring the need for more extensive 
and diverse datasets for training and validation. 
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1. Introduction 

In this paper, we present an extensive study into the detection of driving styles using artificial  
intelligence (AI), focusing on the analysis of vehicle dynamics measurements. Our study is set apart by the use  
of a driving simulator to collect diverse and comprehensive data from different proband groups, allowing  
for a detailed analysis of driver behavior in a controlled environment. This setup comprised both physical 
elements of a vehicle's operating system and a virtual driving scenario, providing a holistic approach to data 
acquisition. 

The experimental setup involved a multifunction steering wheel, control levers, and pedals within a  
simplified vehicle cockpit mock-up, offering realistic driving input elements. Feedback to the driver was given 
through visual, acoustic, and kinesthetic channels, including a curved wide screen for environmental visualization 
and a high-performance force feedback actuator for realistic steering feel. Our setup did not include  
vehicle motion in terms of translational and rotational accelerations, focusing instead on low lateral dynamics 
scenarios. 

Two computing units processed the inputs and outputs of the simulator, with a real-time capable  
industrial PC handling sensor inputs and executing a two-degree-of-freedom steering system model. The second 
unit ran the vehicle dynamics simulation and visualization. This comprehensive setup allowed us to  
create a realistic driving environment and collect high-fidelity data on driver behavior and vehicle  
dynamics. 
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Our study employed an innovative approach to data manipulation and feature extraction, utilizing the  
TSFresh library to generate a substantial number of features from the time domain data. The focus was  
on extracting meaningful patterns from driver interface signals, vehicle state signals, and traffic object signals, 
each meticulously recorded during the simulation runs. This approach allowed us to capture the nuanced  
aspects of driving behavior, which are crucial for developing an accurate AI model for driver style  
detection. 

In the learning process with supervised learning algorithms, we applied Decision Trees (Gareth, 2013), 
Random Forests (Breiman Leo, 2001), and Support Vector Machines (SVM) (Mammone, 2009),  
to analyze the extracted features. The limited size of our dataset, comprising data from 20 human drivers  
and 32 automated driver model runs, necessitated a focus on these specific algorithms and emphasized  
the importance of hyperparameter tuning for optimization. Despite the dataset size constraints, our models 
achieved high accuracy levels in classifying driver types, demonstrating the effectiveness of our approach. 
However, the occasional misclassification of one subject as an algorithmic driver highlights the need for larger 
and more diverse datasets to refine the model's predictive capabilities. 

The diverse studies in the realm of driver behavior analysis illustrate various methodologies and  
focuses. Dimitar Filev's (2009) research concentrates on real-time characterization of driver behavior using 
vehicle dynamics and driver actuations, primarily for identifying aggressive and cautious behaviors.  
Kaustubh V. Sakhare (2020) shifts the focus to the use of vision systems in autonomous vehicles, utilizing 
computer vision techniques for dynamic vehicle detection. Derick A. Johnson (2011) introduces a novel  
approach using smartphone-based sensor fusion and Dynamic Time Warping to detect aggressive driving 
behaviors. 

Lei's (2016) paper takes a predictive modeling approach, classifying driving styles into categories like  
sports and economical, based on historical data analysis. Joshi's (2017) research proposes an algorithm for 
evaluating driver performance using real-time vehicle state data, focusing on steering and pedal inputs. Lastly, 
Patrick Brombacher (2017) employs artificial neural networks for classifying driving styles, based on driving 
maneuvers identified during test trips. 

Contrasting with these approaches, our study harnesses AI-based methods, specifically supervised  
learning algorithms, to analyze driver styles using vehicle dynamics measurements. Our methodology  
is distinct in its rigorous feature extraction from vehicle dynamics data and the application of various  
machine learning algorithms, including Decision Trees, Random Forest, and SVM. This choice is driven by  
the need to address the challenges posed by a smaller dataset, making our study unique in its approach to 
optimizing these algorithms through hyperparameter tuning and achieving consistent results across different 
models. 

This study contributes to the field of AI-based driver style detection by providing a comprehensive analysis  
of vehicle dynamics measurements, enhanced by our novel experimental setup and methodical approach  
to data processing and machine learning application. 

2. Experimental setup 

In order to acquire driving style sample data from different proband groups, a driving simulator  
setup was utilized exchanging  
control signals with a virtual driving scenario. The specific input and feedback elements to carry out the  
driving task are described as follows. Regarding the input elements, a multifunction steering wheel,  
control levers attached to the steering column as well as accelerator and brake pedals were installed  
in a simplified vehicle cockpit mock-up, which is illustrated in Figure 1.  

The feedback kinaesthetic channels of perception.  
For the visual feedback of the virtual environment, two displays came to use. A curved wide screen  
display visualized the present scenario including the road, scenery, rear view mirrors, and traffic. A second 
display was placed above the steering column acting as an instrument cluster providing mainly vehicle  
speed information. Driving sound outputs, such as noise from rolling tires, engine, airstream and passing  
vehicles were provided through loudspeakers. Lastly, a force feedback actuator was attached to the  
steering column which generated validated steering feel corresponding to the dynamic vehicle state  
(Joerg et al, 2023). The aspect of vehicle motion in terms of translational and rotational accelerations acting  
on the driver himself was not implemented in the static experimental setup and therefore limited the  
experimental scenarios to driving with low lateral dynamics. 
 



 
Fig. 1. Experimental static driving simulator setup. 

The processing of the physical driving simulator input and output interfaces and calculation of simulation 
models was distributed on two computing units. A real-time capable industrial PC collected the sensor  
inputs coming from the steering feedback actuator (steering wheel angle, velocity, and acceleration), from  
the pedals (accelerator and brake pedal value) and from all buttons and levers. This PC performs  
pre-processing of the input signals and executes a two degree of freedom steering system model. It  
passes the virtual tie rod displacement, which represents the steering interface to the vehicle model,  
together with the remaining input signals to the second computing unit. On this second unit runs  
the vehicle dynamics simulation in soft real time as well as the maneuver configuration and rendering  
of the visualization. The feedback forces for the steering system are calculated inside the vehicle dynamics  
model and sent back to the real-time PC, where a corresponding steering wheel torque is calculated and 
controlled by the feedback actuator. A schematic topology of the setup components and interfaces is shown  
in Figure 2. 

 

 
Fig. 2. Driving simulator setup topology. 

 



The simulated scenario used to identify driving styles consisted of driving along a three-lane highway section 
of 6.6 km length modeled from real road data. It contained road markings, lane barriers, traffic signs (directions 
and speed limits), highway access and exit lanes as well as multiple traffic objects as shown in Figure 3. The 
initial conditions of all traffic objects like driving lane, starting position, time of appearance and initial speed, 
were kept identical in every run. However, the traffic objects were configured to interact with other traffic objects 
including the ego vehicle, which resulted in varying traffic situations depending on the driving pattern.  
 

Fig. 3. Road and environment visualization from the . 

2.1. Description of the signals  

For the objective of methodically characterizing driving styles, several driver- and vehicle related 
measurement quantities were acquired in the form of time domain data during each experiment run.  

Table 1. Driver interface signals. 

Signal label Signal description Unit 

VC.Gas Accelerator pedal value (between 0 and 1) 1 

VC.Brake Brake pedal value (between 0 and 1) 1 

Steer.WhlAng Steering wheel angle rad 

Steer.WhlTrq Steering wheel torque Nm 

 
The data was grouped into three groups: driver interface signals, vehicle state signals and traffic object 

signals. Table 1 to 3 list the specific measurement signals of each group. A data acquisition sample time of 0.001 
seconds was chosen to sufficiently cover the bandwidth of driver, vehicle, and traffic dynamics. 

Table 2. Vehicle state signals. 

Signal label Signal description Unit 

Car.tx, .ty, .tz Global x-, y- and z-position  m 

Car.vx, .vy, .vz Velocity in x-, y- and z- direction m/s 

Car.v Absolute velocity m/s 

Car.ax, .ay, .az Acceleration in x-, y- and z- direction  

Car.Roll, .Pitch, .Yaw Roll, pitch and yaw angle rad 

Car.RollVel, .PitchVel, .YawVel Roll, pitch and yaw rate rad/s 

Sensor.ObjByLane.OB00.LaneDiff, .tPOI, .tPath Lateral offset with respect to original driving lane m 

Sensor.Road.RD01.Path.DevAng Heading angle with respect to lane direction rad 

Vhcl.Distance Driven distance from simulation start m 

 



The traffic object detection was carried out in the current driving lane of the ego vehicle as well as in the left 
and right neighbouring lane. In case no neighbouring lane existed because the ego vehicle was driving in the 
leftmost or rightmost lane, detection for the corresponding neighbouring lane was inactive. For each lane, relative 
signals always refer to the closest vehicle in front of the ego vehicle in the direction of the corresponding lane.  
A maximum detection range of traffic objects in front was set to 200 m. Outside the detection range, signals were 
marked invalid. 

Table 3. Traffic object signals, the asterisk* is placeholder for lane index left (L), right (R) and ego/center (C). 

Signal label Signal description Unit 

Sensor.ObjByLane.OB00.Lanes*.0.ObjF.0.VelLong Absolute velocity of traffic object in left, right or ego lane m/s 

Sensor.ObjByLane.OB00.Lanes*.0.ObjF.0.sMax, .sMin Maximum and minimum relative longitudinal distance m 

Sensor.ObjByLane.OB00.Lanes*.0.ObjF.0.tMax, .tMin Maximum and minimum relative lateral distance m 

Sensor.ObjByLane.OB00.Lanes*.0.nObjF Number of objects in left, right, and ego lane 1 

2.2. Driver description 

Following the introduced approach, two experimental datasets were generated. The first dataset contains 
recordings from 20 individual human drivers. The driver  ages ranged between 20 and 30 years while the driving 
experience ranged from little to moderate. After the drivers were introduced to the experimental driving simulator 
setup, they were instructed to drive one scenario run for settling in and one subsequent run which was eventually 
recorded. The driving task during experimental runs of this proband group was to follow the predefined road 
while maintaining their personal driving preferences, especially regarding respect of traffic rules, driving speed, 
lane choice and handling of takeover situations. 

The second dataset was created by running 32 variations of an automated parametrizable driver model. The 
variations were formed by permuting four different driver model attributes specified in Table 4. 

Table 4. Driver model attribute variations. 

Driver model attribute Variation values 

Driving style preset (influencing maximum applied longitudinal 
and lateral accelerations and decelerations) 

normal 

defensive 

Minimum time gap to traffic objects ahead 
1.5 s 

1.0 s 

Minimum differential velocity for initiating a takeover maneuver 
10 km/h 

5 km/h 

Desired driving velocity 

100 km/h 

130 km/h 

160 km/h 

200 km/h 

 
Since the scenario length was fixed to 6.6 km, different average driving speeds resulted in different durations 

of recorded data. 

3. Data manipulation and feature extraction 

Our study focuses on the utilization of artificial intelligence (AI) in detecting driver styles using vehicle 
dynamics measurements. This comprehensive analysis entails a meticulous process of data ingestion, graphical 
analysis, consistency checks, feature extraction, and selection, ensuring the integrity and applicability of the data 
for developing a robust AI model. 

Initially, each dataset was individually ingested, providing a detailed base for our analytical procedures. The 
graphical plotting of these datasets was not just a preliminary step but a crucial one, as it allowed us to visually 
inspect the data for underlying patterns, anomalies, or any form of irregularities that might skew our analysis. The 
use of advanced plotting techniques facilitated a deeper understanding of the multidimensional nature of vehicle 
dynamics data, which includes parameters like acceleration, braking patterns, steering angle, and vehicle speed. 



Following the graphical analysis, a critical phase was the inspection for inconsistencies within the data.  
This step was crucial in ensuring the reliability of our dataset for AI processing. The inspection involved 
checking for NaN (Not a Number) values, constant value signals, and any other forms of data anomalies. 
Remarkably, none of the datasets required cleaning, a testament to the meticulous data collection process.  
This rarity in data quality meant that each dataset was viable for feature extraction without the need for further 
preprocessing. 

 

 
Fig. 4. Excerpt of the graphical representation of the recorded signals (18 out of 45). 

A segment of the signals analyzed is exemplified in Figure 4 (excerpt). This illustration not only serves as a 
representative sample of the data but also highlights the complexity and diversity of the vehicle dynamics 
measurements. The signals, varying in amplitude, trend, and dynamic behavior, underscore the need for a 
sophisticated approach to feature extraction. 

For the extraction of features, we employed the TSFresh library, a powerful tool for time series data 
processing. The EfficientFCParameters setting was chosen for this purpose. This choice was pivotal in  
generating a comprehensive set of features - a total of 35,235, to be precise. An initial trial was also  
conducted using the MinimumFCParameters setting; however, given the complexity of our data, 
EfficientFCParameters was deemed more suitable with an acceptable time and resource effort. It offered a wider 
range of features capturing the intricate aspects of driver behavior as reflected in the vehicle dynamics  
data. 

To manage the vast number of features generated and to identify the most significant ones, we  
calculated feature importance using the Random Forest algorithm. This method allowed us to sift through the 
plethora of features and focus on those most relevant to driver style detection (according to the given target 
variable, as described in the following section). Furthermore, to assess the significance of the extracted  
features, we introduced an additional randomized variable into the feature matrix. This approach served as a 
benchmark - any feature less significant than this random variable was deemed non-essential and  
subsequently eliminated. This rigorous selection process resulted in approximately 12,000 features being 
retained. These selected features, now refined and concentrated, form the foundation for our subsequent analysis 
involving supervised learning techniques. The random forest was trained with various numbers of trees ending up 
by the number of 50,000. The according train test split for the analysis of the feature importance was set to  
80-20%.  

In addition to the comprehensive analysis detailed earlier, a significant aspect of our study is depicted  
in Figure 5, which presents a visual representation of the feature importance as determined by the Random Forest 
algorithm. This figure specifically illustrates a bar plot of the top 20 features, offering a clear insight into the 
features that most significantly influence the driver style detection model. 



What stands out in this visualization, as well as a further analysis of the most important features not present  
in this figure, is the recurrent appearance of certain sensor data, notably those labeled "Sensor.ObjByLane", 
"Steer.WhlTrq", and "Vhcl.Distance". The frequent occurrence of these specific sensors among the top-rated 
features is particularly noteworthy. It indicates that these sensors play a pivotal role in the assessment of vehicle 
dynamics and, consequently, in the determination of driver style for this dataset and the drivers in question. 

 

 

Fig. 5. Top 20 features identified by Random Forest algorithm. 

The predominance of these sensors in the top features of our model highlights their collective importance in 
the accurate assessment of driving dynamics. It suggests that a driver's interaction with their environment, their 
steering behavior, and their acceleration patterns are among the most defining elements of their driving style. 
This insight is invaluable in further refining our AI model, ensuring it captures the most relevant and impactful 
aspects of driver behavior. 

The meticulous process of data preparation, from graphical analysis to feature extraction and selection,  
ensures the integrity and applicability of our dataset. This rigorous approach lays the groundwork for developing 
an AI model capable of accurately detecting and categorizing driver styles based on vehicle dynamics 
measurements.  

4. Learning process with supervised learning algorithms 

In the quest to advance the field of driver style detection using artificial intelligence, our study embarked  
on an exploration of supervised learning algorithms to analyze extracted and reduced features from vehicle 
dynamics measurements. The essential part of our research involved the meticulous application of three distinct 
machine learning algorithms: Decision Trees, Random Forest, and Support Vector Machines (SVM). The choice 
of these algorithms was primarily driven by the limited scope of our dataset, which comprised data from  
20 human drivers and 32 automated driver model runs. This dataset size, while significant for initial studies,  
is relatively small compared to the vast data requirements of deep learning models, thereby necessitating the use 
of more traditional machine learning approaches. 



A pivotal aspect of our methodology was the optimization of each selected algorithm through rigorous 
hyperparameter tuning. This process is fundamental in machine learning, as it involves fine-tuning various 
parameters within each algorithm to identify the most effective configuration for the specific characteristics  
of our dataset. The tuning process is both an art and a science, requiring a deep understanding of the algorithms 
and a methodical approach to testing different parameter combinations. 

Despite the inherent differences in the theoretical foundations and operational mechanisms of Decision Trees, 
Random Forest, and SVM, our study revealed a remarkable consistency in the results obtained from these 
algorithms. This consistency not only reinforces the robustness and reliability of our feature selection process but 
also highlights the versatility of the features in adapting to different machine learning techniques. Such 
adaptability is crucial in the field of AI, where the choice of algorithm can significantly impact the model's 
performance and accuracy. 

 

 
Fig. 5. Confusion Matrix with the averaged results across all models. 

A key element in evaluating the effectiveness of our classification models was the use of confusion matrices. 
An illustrative example, represented in Figure 6, provides a detailed breakdown of the successes and failures of 
the model in predicting the target variable  the type of driver, classified as either human or algorithmic. The 
confusion matrix is an invaluable tool in machine learning, offering insights into the precision and recall of the 
model, and helping identify areas where the model may be misclassifying data. 

The consistent application of an 80-20 train-test split across all algorithms ensured the robustness of our 
testing process. This standard split, where 80% of the data is used for training the model and 20% for testing its 
predictive power, is a widely accepted practice in machine learning, providing a balanced approach to model 
training and validation. 

Table 5. Classification report. 

Class Precision Recall F1-Score Support 

1.0 1.00 0.80 0.89 5 

2.0 0.86 1.00 0.92 6 

accuracy   0.91 11 

macro avg 0.93 0.90 0.91 11 

weighted avg 0.92 0.91 0.91 11 

 
Interestingly, while our models achieved high accuracy levels, consistently classifying the majority of drivers 

correctly, there was a recurring anomaly (as shown in Table 5). One particular subject was consistently 
misclassified as an algorithmic driver in the test dataset. This consistent misclassification raises intriguing 
questions about the unique aspects of this subject's driving style, which the models consistently interpreted as 
non-human. Such findings highlight the nuances and complexities involved in driver style detection and 
underscore the need for models to be adaptable and sensitive to a wide range of driving behaviors. 



In conclusion, our study demonstrates that while the employed machine learning algorithms are highly 
effective in classifying driver types based on vehicle dynamics data, the limited size of the dataset poses a 
constraint on the overall validity of the model. The occasional misclassification, particularly of one subject as an 
algorithmic driver, indicates that our model, although robust, requires a larger and more diverse dataset to 
enhance its accuracy and reliability. Future research should focus on expanding the dataset, incorporating a 
broader range of driving styles and scenarios, to refine the model's predictive capabilities further and ensure its 
applicability across a wider spectrum of driving behaviors. 

5. Summary and outlook  

Our research has provided valuable insights into the utilization of artificial intelligence for detecting driving 
styles using vehicle dynamics measurements. The study used a state-of-the-art driving simulator to gather data 
from a variety of proband groups. This setup enabled the collection of rich data sets encompassing a range of 
driver interface signals, vehicle state signals, and traffic object signals. The experimental approach and 
subsequent analysis demonstrated the potential of AI, specifically supervised learning algorithms like Decision 
Trees, Random Forest, and SVM, in accurately classifying driver types. 

The feature extraction process, conducted with the TSFresh library, was pivotal in identifying relevant driving 
behavior patterns. Despite the limited size of the dataset, the study achieved high accuracy in classifying driver 
types, although it also revealed challenges such as the misclassification of specific driving patterns. These 
findings underscore the complexity of driver style detection and the critical role of comprehensive data in 
developing effective AI models.  

A primary focus of future studies should be the expansion of the human data set. Recording data from a larger 
and more diverse group of human drivers, encompassing different age groups, driving experiences, and various 
backgrounds, is essential. This expansion will not only enhance the robustness of the AI models but also ensure 
their applicability and accuracy across a broader spectrum of the driving population. A further focus relies on the 
repeatability of the same drives performed by certain drivers to achieve a dataset with consistent driving 
characteristics. 

In conclusion, while our study has made significant strides in the field of AI-based driver style detection, there 
is a clear path forward for further research. Expanding the dataset is the crucial step in refining and enhancing the 
accuracy and applicability of AI models in understanding and predicting driver behavior. 
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