

Advances in Reliability, Safety and Security, Part 4
Association, Gdynia, ISBN 978-83-68136-16-6 (printed), ISBN 978-83-68136-03-6 (electronic)

AvailSim4: Open Source Framework For Availability
And Reliability Simulations

Milosz Blaszkiewicz, Andrea Apollonio, Thibaud Buffet, Thomas Cartier-Michaud,
Lukas Felsberger, Jack Heron, Jan Uythoven, Daniel Wollmann

CERN, Geneva, Switzerland

Abstract

Reliability, availability, maintainability, and safety (RAMS) of a system are key performance indicators. Availability
. This requires flexible,

scalable, and performant simulation tools. AvailSim4 is a software framework for availability and reliability simulations of
complex systems. Written in Python, it is a versatile, scalable, and user-friendly tool combining the Monte Carlo approach
with the Discrete Event Simulation method. It enables detailed studies of customizable models for many-component systems,
accounting for complex fault dependencies, inspection policies, adaptive model behavior according to operational phases and
phase-transitions, and advanced repair policies. It is open source and features tabular input/output, allowing its integration
with other tools. To handle large simulation models, AvailSim4 provides parallelization for computing grids as well as
optimized sampling methods for increased computational efficiency. Application of the tool provides a comprehensive set of
statistical insights allowing for the availability optimization of complex dynamic systems. It has demonstrated enormous
value to reliability and availability assurance at CERN for particle accelerators and their sub-systems. This is highlighted in
the example of the availability study of the CERN Future Circular Collider.

Keywords: reliability, availability, stochastic simulation, Monte Carlo, Discrete Event Simulation, simulation software, open-source

1. Introduction

Reliability and availability are key factors of system performance. If not properly considered, failures and
downtime may lead to underperformance, financial losses and, eventually, premature end of life. However, if
adequately treated, significant gains may be achieved using redundancies where required, optimal spare parts
management, and appropriate intervention procedures.

Tools to evaluate reliability and availability can be categorized as analytical or stochastic models. Analytical
models, such as Fault Tree Analysis (FTA) and Failure Modes, Effects and Criticality Analysis (FMECA),
deconstruct failures and their interdependencies into trees and fault paths, which may be weighted according to
probability and criticality. These provide valuable insight. However, they fall short when covering holistic scope
and full-lifecycle dynamics of large complex systems (Kamat et al., 1975). It is possible to develop a general
mathematical model for reliability purposes; those, however, are limited in terms of the complexity and may
deviate from realistic scenarios on account of simplifications required to produce the model. They often feature
implicit assumptions, which need careful consideration when interpreting the results.

Stochastic simulation methods such as Monte Carlo make use of random sampling to analyse the
probabilistic nature of real-world processes. They allow for nuanced understanding of system behavior,
accounting for changing operational conditions and indirect consequences of failures. They can significantly
enhance accuracy of predictions and assist the development of more robust and resilient systems. However, they
are computationally intensive, requiring significant resources for large-scale computations (Shonkwiler and
Mendivil, 2009).

CERN operates a vast particle accelerator complex comprising machines with varying sizes and complexity.
Among them there is the 27 km long Large Hadron Collider (LHC) ing 2004), which is the largest and

ESREL 2024
Monograph Book Series

most complex particle accelerator ever built. The LHC itself is composed of many systems responsible for
injecting, circulating, accelerating, and colliding particles. These include many advanced technologies in
extreme operating conditions, e.g. superconducting magnets, ultra-high vacuum, radiation-tolerant electronics,
and particle detectors. Reliability and availability assurance are essential to ensure the effective exploitation of
the LHC. They are also necessary for the development of new accelerator components, as the performance of
existing machines is improved, and components are consolidated. In addition, next generation machines like the
Future Circular Collider (FCC) (Benedikt et al., 2018) are planned, which
next generation of energy-frontier particle accelerators, with a circumference of 91 km.

This paper presents the design methodology of AvailSim4, a probabilistic framework using the Monte Carlo
(MC) approach and showcases its benefits in real-world use-cases. It is an open source, versatile, scalable, and
user-friendly tool that has demonstrated its value for reliability and availability assurance at CERN. AvailSim4:

 enables detailed studies of customizable models for many-component systems, accounting for complex
fault dependencies, inspections, operational phases, and replaceable structures.

 is open source and features tabular input/output, allowing integration with other tools.
 handles large simulation models, allowing parallelisation with computing grids as well as optimised

sampling methods for increased computational efficiency.
The remainder of this paper is laid out as follows. Section 2 gives an overview of comparable simulation

tools and highlights the potential shortcomings targeted by AvailSim4. Section 3 outlines the design
requirements emerging from this comparison and relevant experience in availability studies at CERN. Section 4
outlines the algorithm, implementation, and most relevant features of AvailSim4. Section 5 shows the added
value of AvailSim4 using the FCC-ee availability study as an example. Section 6 summarises overall content and
conclusions.

2. Related work

The field of many-component availability and reliability simulations has seen multiple commercial and open-
source software solutions, usually well-integrated within broader families of RAMS tools. Typically, these
solutions complement analytical methods provided by these tools.

Formulation of the model is usually done within the software by means of graphical inputs of fault trees or
reliability block diagrams, incorporating additional parameters of stochastic simulations see (Penttinen et al.,
2019; ReliaSoft, 2023; AvSim, 2023) for examples. In some cases, systems are represented with colored Petri
nets (Realist, 2023; Robidoux et al., 2010). There, the emphasis is shifted from individual components towards
state changes within the system.

A common denominator for the referenced reliability and availability simulation tools is the use of Monte
Carlo algorithms. The inherent limitation of slow speed is addressed by limiting the scope of the simulations,
runtime optimization, and the use of efficient computing languages.

Advantages and disadvantages of specific software solutions have been discussed in detail in (Bhattacharyya
et al., 2012). Although there has been substantial progress in this field, certain challenges remain. A notable
drawback of many existing tools is their proprietary nature. They are licensed, closed-code commercial software.
Building extensions is difficult if not impossible in such cases, while interaction with the software is mostly
restricted to manual inputs. Automation of workflows and integration of large volumes of results from external
sources poses a significant challenge. Furthermore, outputs generated by these tools remain within the
ecosystems of their parent software packages. At the same time, there have been few open-source software
packages specifically targeting many-component reliability and availability simulations. An example is Stosim
(Silkworth and Ormerod, 2018), which is open source and provides tabular input/output formats. However, its
documentation is limited, and it is written in R, which is more difficult to maintain in a large software project.

The AvailSim tool aims to address shortcomings mentioned above. The software described in this paper is the
fourth version in this family of frameworks. The first version of AvailSim was developed for
SLAC/International Linear Collider (ILC) at Stanford University as a MATLAB program to simulate availability
and effects of failures on performance of the accelerator (Sureda Pastor, 2013). It accepts a multitude of inputs,
such as failures, maintenance, workforce needs. AvailSim2 was created for the International Fusion Materials
Irradiation Facility (IFMIF) and added the support for additional factors such as operation parameters (Sureda
Pastor, 2013). The next edition, AvailSim3, was developed for the European Spallation Source (ESS) project in

 et al., 2014). Developed in Python, it added a range of accelerator specific
features, particularly the impact of a loss of system capacity on the performance of accelerator operation. Like
this, it could, e.g., address the loss of accelerating cavities and their impact on the achievable particle energy.

AvailSim4 provides a complete simulation platform for availability and reliability needs, covering the whole
range of functions and elements usually used in those fields. In addition, its input interface is open to both
manual and programmatic access to allow unrestricted use of other tools or methodologies to communicate with

the framework. This way, large simulation campaigns run on computing clusters or in cloud-based solutions are
straightforward to achieve. On top of that, the framework may serve as a starting point for more tailored
simulators by offering a high-quality, open, and object-oriented codebase, as well as extensive documentation,
which makes it easy to interface with custom modules.

3. Requirements

Based on experience with previous versions of AvailSim and the above survey of existing tools, a set of
requirements was derived for AvailSim4.

R1: The first and main requirement is to be able to perform user-defined analyses in the RAMS domain for
any area of application. Its main functionality is to provide calculations of availability or reliability for the
modelled system and its sub-systems. Models must be easy to define and adapt to real-world studies, with
integrated support for relevant properties of simulated systems. This encompasses critical elements in RAMS
analyses, such as failure modes, individual and group repair strategies, inspections, and operational phases
simulating different loads or behaviours of the system. In addition, it should allow for advanced cases such as
complex logic driving failure events. Although the primary target area of application is accelerator-related, the
framework needs to be sufficiently abstract to handle any type of a technical system, given the variety of systems
involved in accelerator technology.

R2: The second requirement is that the software should have means to easily interface with external sources,
aside from accommodating user-defined inputs. It should allow users to integrate results of analyses performed
elsewhere as well as data from various data sources, such as databases, fault tracking systems, etc.

R3: The third requirement relates to scalability and performance. The simulation engine must be designed for
efficient handling of large-scale simulations and provide easy use of computing clusters. Advanced algorithms to
optimize Monte Carlo, such as quasi-Monte Carlo, importance sampling or importance splitting, should be
supported in the framework for rare-event simulations, as this is very relevant for reliability studies of safety-
critical systems. The methods should be able to optimise the computational workload mostly automatically in
simulations.

R4: The fourth requirement pertains to versatility, flexibility, and, in consequence, extensibility of the
proposed software. The code should be open-source and developed with a wider user community in mind,
acknowledging potential long-term benefits from internal and external contributors. This should be facilitated by
a broad and generic application scope, as well as use of accessible, popular, and widely accepted programming
languages and tools. Maintaining the tool as open-source project ensures that it can benefit from collaborative
contributions, transparency, and the ability to adapt and customize the tool to specific research needs. Open-
source projects foster knowledge sharing, enabling researchers to scrutinise, validate, and improve the
algorithms and methodologies collaboratively. This allows for leveraging continuous refinements based on
shared expertise.

R5: The fifth requirement pertains to accessibility and maintenance of the project, which requires
comprehensive documentation. A user guide and other appropriate manuals should facilitate a swift and accurate
introduction to the tool as well as maintain a high-quality record of available features and options. Prioritising a
clear and concise user guide, well-documented code, and providing overviews of both simple and advanced
examples is crucial, especially in high-turnover developers' and users' environments. Moreover, it is desirable for
the project to be maintained in an accessible versioning system to ensure transparency, traceability, and efficient
collaboration.

To address these requirements, AvailSim4 was written in Python utilizing object-oriented programming
principles. It incorporates a model-agnostic and high-quality simulation codebase so that it can serve as a
platform for a variety of availability and reliability simulations in the long-term. It provides a unified and
cohesive approach to simulations, a crucial aspect in scientific and high-turnover user and developer
environments. Being highly portable, it can run on local computers and computing grids alike. In addition, the
software offers support for more advanced statistical methods, such as quasi-Monte Carlo sampling and
importance splitting, to ease the computational burden of rare-event simulations. The following sections explain
these aspects in more detail.

4. Methodology

4.1. Model Definition

The AvailSim4 framework represents systems as compound aggregations of components. An example of a

simple system is shown in Figure 1a. Basic components (A , B1 , B2) have an assigned failure mode,

defining properties of their failure and repair probability distributions. The status of each compound component
(System and B) is defined by a logic depending on the fault status of its children. In Figure 1a, the

The mechanism defining the status of compound components is defined in terms of the number of
subcomponents required to work. For instance, in a component with 3 children 1 out of 3 is equivalent to
having 3 redundant paths, 2 out of 3 stands for partial redundancy with one path acting as a back-up, 3 out of 3
means that there is no redundancy. AvailSim4 allows also to define a custom children logic. This feature is
discussed in greater detail in Section 4.5.

During the simulation, the statuses of basic components are decided according to events generated from
random samples. The random sampling is associated to stochastic failure and repair laws defined by the user for
each element. Whenever a new event occurs, the status change of a component is propagated from the basic
element upwards, updating statuses of all compound components. In the example of Figure 1a, the status of the
compound component , both required to work. A is a

fails too. Once it is repaired, the system operates
again. The compound component B is made of two redundant basic components B1 and B2. Only when both

B fails and with it as well.
Operational phases are one of the fundamental parts of AvailSim4 simulations. They are essential in RAMS

studies, as complex machines usually operate in different modes, resulting in different equipment stresses
modifying the probabilities of failure. The factor which complicates the analytical calculations is that phases
may depend on the status of the system. E.g., a factory experiencing a stop will likely have to enter a restart
procedure rather than simply continuing once the fault is repaired. In the simplified model of an accelerator such
as the LHC, the following standard phases can be defined: injection, energy ramp, stable beams, ramp-down.
Figure 1b shows the typical succession of phases in a collider like the LHC. Without failure the four phases
occur one after the other guided by succession rules. If a failure occurs, (indicated by the red cross) the
succession is disturbed. In the example a failure occurs during an energy ramp, the next phase will be a ramp-
down, followed by a repair and the restart of the standard sequence of phases.

4.2. Algorithm

The Monte Carlo algorithm in the AvailSim4 framework operates by generating multiple timelines, each
representing a separate and independent simulation of a system lifetime. Figure 2 presents a graphical
representation of this concept. Randomization ensures a diverse set of potential outcomes. After conducting a
comprehensive series of simulation runs, accurate estimations of mean, variance, and confidence intervals for the
occurring events can be provided. The determination of sufficiency is a consideration of convergence, where
additional simulations beyond a certain point yield negligible improvements in the precision of the estimates.
The set of results typically describes events such as failures, repairs, inspections, and phase changes.

The Discrete Event Simulation method is used for executing individual timelines. It is implemented in the
variant known as the three-phased approach (Pidd and Cassel, 1998).

The simulation terminates either when there are no more events to execute, or the next selected event is
scheduled after the predefined simulated lifetime.

Fig. 2. Illustration of N Monte Carlo iterations. Failure events are represented by crosses. Each iteration provides statistics of number of
occurrences and duration of events (failure and repairs). The statistical summary provides insights for each type of events.

Fig. 1. (a) Example of a simple system with basic components A, B1, B2 and compound components System and B;
(b) Succession of phases in AvailSim4 Monte Carlo iteration.

a) b)

Figure 3 contains an example timeline of events for the simple system shown in Figure 1a, decomposed into
timelines of events of individual components. Each iteration of the simulation starts with components in
operating, non-failed state. A sample is drawn for each event which is valid at a given moment. Events are
failures of components, repairs for failed components, etc. In the illustrated case, a failure of component A is
occurring first. The simulation timer is updated to match the sample and the failure event is triggered. It adds a
repair event with its length defined by another random number. Those samples are renewed each time a
component changes its status.
necessary for it to

4.3. Implementation

This section outlines in a concise way the chosen code implementation strategies for AvailSim4. The input
and output format, the coding structure, the development process, and key considerations that underpin the
overall functionality and quality are discussed.

AvailSim4 is a command-line tool, which uses input files prepared in external spreadsheet applications. This
has been done for simplicity, as system experts providing input data can easily enter it in this format. Moreover,
tabular data can be generated and modified in a programmatic manner, which is important for automation. The
template input files are well defined and follow the structure which is shared with the code and documented in
the user guide. Figure 4a shows an example of a configuration of a system. A block diagram of this system is
shown in Figure 4b. It features five basic components, grouped into two high level compound components: C1
and C2. Each compound component has its own separate basic component (A, B) and a power
supply . The power supply has a common part (common supply) and parts dedicated to specific sub-systems
(A_SUPPLY, B_SUPPLY).

The choice of Python as the programming language was driven by its extensive use in the scientific
community. This choice reflects the general trend within scientific computing (Millman and Aivazis, 2011), as it
offers integration with many open-source libraries, facilitating transparency, and increasing the potential for
external contributions. With the advantages of simplicity and expressiveness of the language, comes the cost of
reduced computing efficiency. Python, an interpreted language, performs worse than most compiled languages,
although an increasing number of optimisations is addressing this issue (Nagpal and Gabrani, 2019). This aspect
is discussed for AvaiSim4 in Section 4.4.

Fig. 3. Timelines of events comprising an individual system lifetime.

Fig. 4. (a) Example contents of the Architecture sheet of the AvailSim4's input file;
(b) real-time visualization add-in showing the block diagram as a graph of components.

High quality of the developed code is realized on various levels: the development is subjected to a thorough
code review process performed by software developers external to the team and a comprehensive set of 141
automated checks running in a continuous integration pipeline. The code review ensures the adherence to coding
standards, fostering collaboration among developers, and strongly promoting the overall quality. The continuous
integration pipeline comprises unit, end-to-end and integration tests as well as tools measuring code quality
metrics. Those programmatic tests are run after every change to the code, determining if all functionalities
remain intact. The tests, aside from preventing unwanted changes, help achieving backwards-compatibility,
further ensuring that early models can work with newer releases of the framework. The code quality tools keep
track of metrics such as testing coverage, conformity with coding standards such as PEP8 and code anomalies.

Ten developers have been involved in the creation and maintenance of the code over the last four years. It has
been used in at least four well documented cases. Aside from the later mentioned FCC project, it was also the
main tool for HL-LHC Energy Extraction study (Blaszkiewicz et al., 2022), Solid-State RF amplifiers
(Felsberger et al., 2021), availability study of MYRRHA accelerator driven system (Felsberger et al., 2023,
2024). It is also actively used for other ongoing reliability and availability studies at CERN.

Thanks to the early adoption of the open-source strategy AvailSim4 does not depend on internal CERN
software packages nor proprietary solutions. As such, AvailSim4 can be easily integrated into any environment

- promoting free access and interoperability between various ecosystems.
Moreover, it makes the project more sustainable in the long-term, further reinforcing its longevity.

4.4. Optimized sampling approaches

A frequently raised challenge associated with Monte Carlo methods is their propensity for being
computationally intensive. This becomes particularly pronounced in the context of reliability simulations for
safety-critical systems, in which events of interest occur very rarely. Using the standard Monte Carlo algorithm
to observe such events, the overall execution time may surpass reasonable resource and time constraints defined
for a study if executed on personal computers.

To address this challenge, the AvailSim4 framework is designed to function within High-Performance
Computing (HPC) grids. Monte Carlo simulations are easily parallelisable since iterations are entirely
independent from each other. Consequently, simulations can be efficiently executed in batches across separate
computing nodes. The final step, involving the processing of results from individual instances, is deferred until
all instances have finished their simulations.

For users at CERN, AvailSim4 has a built-in support for the CERN grid (Thain et al., 2005). It encompasses
both assistance at submitting the computation jobs to the grid and processing the results from individual
instances. Using this feature, users can runAvailSim4 simulations simultaneously on hundreds of computing
nodes.

Aside from using more computational power, the AvailSim4 framework also has implemented two advanced
sampling methods for speeding-up the simulations by increasing computational efficiency: quasi-Monte Carlo
sampling (Owen, 2003) and Importance Splitting (Garvels, 2000).

The first method is based on replacing a sampling provided by a pseudo-random number generator with one
that chooses the samples more efficiently. As illustrated in 5a, the pseudo-random number generation is
generally not as efficient at uniform coverage of the problem space as it could be. In a plot of two-dimensional
samples in a plane, one can see clustering in some places and empty irregular areas in others. Quasi-Monte Carlo
counters this by producing samples based on low-discrepancy sequences. Although not random by default, they
are a better choice as sources of random numbers, leading to decreased variance of results. The problem space
can be covered more evenly with less samples. AvailSim4 utilizes an open-source library (Choi et al., 2021)
allowing users choose the Quasi-Monte Carlo sampling for improved sample efficiency (Blaszkiewicz, 2022).

The second method, Importance Splitting, is concerned with the simulations themselves. Since not all
simulations will eventually produce relevant events, it is more efficient to guide simulations towards relevant

a)

Fig. 5. (a) Plot of two-dimensional quasi-Monte Carlo samples compared with standard pseudo-random number generator;
(b) an illustration of example evolution of restarts in the Importance Splitting algorithm

b)

events and discount their probability of occurrence by factoring in that relevant events were oversampled. This
means that each iteration going through a system lifetime must keep track of a certain case-specific
metric. When it reaches a pre-defined threshold, the iteration is stopped and repeated in multiple copies going
onwards in the simulation time. Each iteration can have multiple thresholds, meaning that the branching will

interest and estimating its probability. Conversely, this also means that rare scenarios may be omitted if the
criticality metric is defined incorrectly.

Figure 5b shows an example of how criticality metric evolves in simulations started in only three instances in
the first level. The criticality metric can be, e.g., a number of faults in the system. When in one iteration the
criticality metric reaches the first threshold, that simulation is stopped and restarted in three copies from that
point onwards. One of them reached another threshold and is repeated three times again.

4.5. Selected features of AvailSim4

The component structure in AvailSim4 supports the shared children feature. This means that each component
may appear as a child of more than one parent. In Figure 6 this
which is
composed in AvailSim4 is no longer a tree but a directed acyclic graph. The root of that graph represents the
entire system. Connections between components can create an arbitrarily large structure of dependencies.

A common characteristic of repairable systems is that groups of components, a tray, or a box, are swapped in
case of a failure instead of repairing individual components in-situ. This can be modelled by minimal
replaceable units (MRU). In Figure 6, the MRU is defined for the power supply element used by components C1
and C2. The description of the system in the input file is presented in Figure 4a. The system is built of two

shared part and C2 .
Whenever any of those fails, they will be replaced together, effectively removing possibly hidden failures in the
MRU.

Periodic inspections are frequently featured in RAMS analyses. In redundant systems, failures may not
always be visible, and their presence is revealed only when a suitable inspection is performed. Inspections are
one of the key maintenance elements preventing critical errors of complex systems. They ensure that redundancy
can be maintained, drastically decreasing the likelihood of an overall critical damage. In AvailSim4, each failure
mode can have an associated inspection interval, at which it can be discovered and resolved.

Custom children logic is another advanced feature included in the simulation engine which enables modelling
fault dependencies in relation to other operational conditions (such as phases). User may use it to define an

lass implementing a
defined structure. This way, models may express redundancies where only certain configurations of faults among
sub-systems can be tolerated or change depending on a specific phase. An example of this is dynamic
compensation of chains of RF systems in particle accelerators (Felsberger et al., 2023) and (Felsberger et al.,
2024).

Root cause analysis is a tool to gather additional information about events in the simulations. The feature
takes a snapshot of all components in the model when user-defined circumstances arise. For instance, if the
component C2 in Figure 6 fails, it might be relevant to understand whether it is more often caused by the power
supply dedicated to the C2 component or the component B. In this case, the root cause analysis allows users to
save states of all components in the system when C2 fails. This feature is also very useful for the debugging of
models. As an addition, AvailSim4 project features also an add-in to Microsoft Excel for supporting model
creation. It features input structure creation, automatic suggestions for references to elements of other tables, a

Fig. 6. Example of a model utilizing shared children feature.

compact user guide accompanying specific worksheets and a real-time visualization of the component graph.
A screenshot of the extension is presented in Figure 4b.

5. Use-Case: The Future Circular Collider (FCC) RF Systems

This section provides a recent example to showcase an application of AvailSim4 to RAMS analyses. The
FCC is CERN s leading proposal for the next generation of energy-frontier particle accelerators. The AvailSim4
framework was used to study certain availability aspects as part of a feasibility study.

The FCC is proposed to have a circumference of 91 km, adjacent to the 27 km LHC, which would make it
the largest particle collider ever built. Each year, 185 days are scheduled to physics, of which 80% must be spent
at nominal parameters to achieve physics goals (Benedikt et al., 2019). The LHC was available for 77% of the
period of 2016-2018 (Todd et al., 2019). Considering additional challenges in maintaining the FCC, like its size,
complexity, and ambitious technical challenges, availability is a significant risk to its objectives.

FCC operation is planned in two stages, the first being an electron-positron collider (FCC-ee) starting
around 2040. It will have four energy modes in its projected 15-year lifetime, labelled and , which
will differ in operational requirements. The FCC-ee design can be divided into two functional systems: the
injector complex, which produces and accelerates the particles, and the main colliding ring. Assuming no
external delays, planned operation consists of six phases shown in Figure 7:

1. Set Up: Magnets are cycled, RF systems are set and equipment is prepared for injection of particles, 10
minutes.

2. Fill: Particles are injected into the main colliding ring, 5 minutes.
3. Adjust: Final adjustments are made for collisions, 10 minutes.
4. Physics + Top-Up: Particle collisions begin, producing luminosity. Particles that are "burned off" in

collisions are replenished -
accelerator can remain in this phase until it is deliberately ended by the operations team or by an
equipment failure.

5. Burn Off: If the injector complex fails during phase 4, the main colliding beams can be maintained with
decaying luminosity for approximately 60 minutes, after which the accelerator goes down for repair.

6. Down for Repair: If the main colliding ring fails in any phase or the injector fails during phases 1-3, the
accelerator is stopped for repair.

In Figure 7, the standard succession of phases is shown by the blue arrows. Deviations due to faults and
failures are indicated by orange (injector complex) and red (main colliding ring) arrows and they may occur in
any phase except Down for Repair. Following a failure, a repair process restores the default phase sequence
according to the green arrows. The whole sequence is implemented in AvailSim4 using its Phase features.

The injector complex and main colliding ring are composed of many constituent systems, and availability

must be assessed individually for each one. The Radio Frequency (RF) was chosen as the first. It is responsible
for accelerating particles to the nominal collision energy and topping up the energy emitted by the large amounts
of synchrotron radiation. The RF system has an availability requirement of 97.7% (Heron et al., 2023). It is

Energy Mode

Beam Energy [GeV]

45.6

80

120

182.5

Redundancy none none 10% 10%

 Main ring Injector
complex

Main ring Injector
complex

Main ring Injector
complex

Main ring Injector
complex

Cavities 112 24 264 56 264 112 752 600

Table 1. Energy modes, applicable redundancies with corresponding numbers of cavities; from (Raubenheimer, 2023).

Fig. 7. Schematic representation of phases and their succesion in the model of FCC RF.

composed of discrete cavity circuits in growing numbers for each energy mode, shown in Table 1,
(Raubenheimer, 2023). Depending on the energy mode, there are between 136 and 1352 elements in the
AvailSim4 simulation.

Theoretically, nominal energy can be preserved if no more than 10% of cavities are unavailable. Practically,
this is feasible only for the and modes, where the beam current is relatively low. This is represented in the
AvailSim4 model by assigning children logic which allow for a degraded state with incomplete redundancy. In

 and , a tripped cavity immediately dumps the beam to prevent beam induced damage to the cavity.
RF faults may occur in two types. Short Faults are reparable via remote reset. In modes, they can be

repaired without changing phase provided the total number of tripped cavities does not exceed 10%. Long Faults
require human intervention and cannot be repaired while the beam is running but only when the accelerator is
Down for Repair. This is modelled by combining children logic and phase features in AvailSim4.

Key simulation inputs are the four probability distributions governing the simulation models shown in
Table 2. These are based on experience with comparable systems in the LHC (Heron et al., 2023).

The simulation is a projection of the FCC-ee if reliability and repair time per RF circuit stay as they are in the
LHC. Each energy mode was simulated through 100 years of operation, with results shown in Figure 8. The drop
in availability from to is explained by the greater number of cavities and therefore greater exposure to RF
faults. While the number of cavities also increases through , the 10% voltage redundancy in these modes
keeps availability above the 97.7% requirement.

Projections for the modes show that RF cavities will lead to inadequate availability if no redundancy is
present. However, cavities at all energy modes have the same 10% voltage margin. Therefore, the same
redundancy seen in could in principle be used in Z, W modes. A candidate technology to achieve this is
ferroelectric fast reactive tuning with an appropriate response time of 4 (Kanareykin et al., 2023). The
potential availability gain using this technology was simulated using the same AvailSim4 model, illustrated by
hashed bars in Figure 8. A concerted R&D effort is now underway to demonstrate the technical feasibility of this
solution.

Table 2. Probability distributions used in the model; unit: hours (h), where applicable.

6. Summary

AvailSim4 is an open-source tool offering a Monte Carlo-based simulation environment for availability and
reliability studies. Its features were created with safety-critical systems for the accelerator community in mind,
but the developed approach is general and can be directly applied to other application areas. As a successor to
previous versions of AvailSim, it builds on top of extensive practical knowledge and addresses gaps identified in
comparable tools. It is an open-source project developed at CERN and released under the GPL-3.0 license.

The framework allows for a significant degree of flexibility and integration with other tools. It facilitates in-
depth examinations of tailored models for systems with numerous components, considering intricate fault
interconnections, inspection strategies, adaptive model responses based on operational phases and transitions,
and sophisticated repair policies. Tabular input format makes it easy to programmatically interface through
custom user scripts with a wide variety of other software packages. Computational performance, aside from
using state-of-the-art external libraries and optimisation techniques, is addressed by Quasi-Monte Carlo and

Fault Fault Dist. Parameters Repair Dist. Parameters

Short Fault Exponential Exponential

Long Fault Exponential 3-p. Weibull

Fig. 8 Results of the FCC RF model simulations.

Importance Splitting methods to decrease high computational workloads for reliability simulations of safety-
critical simulations.

To ensure the longevity of the project, extensive documentation and high-quality code have been applied
from the very start of the project thorough code reviews and automated checks. The development concentrated in
the open repository will continue to focus on addressing ongoing needs of the users.

AvailSim4 has been in use since 2019. It has demonstrated its ability to deal with real-world scenarios and
studies, both at CERN and in other research institutions. It has been used in several well-documented cases of
availability and reliability studies and it continues to be in use for future projects like the Future Circular
Collider (FCC). As shown in this use-case, an AvailSim4 simulation can be instrumental to identify availability
requirements of sub-systems for highly configurable operational scenarios.

References

AvSim, accessed 15.12.2023, https://www.isograph.com/software/availability-workbench/availability-simulation/avsim/, Isograph Inc.
4. Availability

simulation software adaptation to the IFMIF accelerator facility RAMI analyses. Fusion Engineering and Design 89, 2425-2429.
LHC Design Report Vol. 1 The LHC Main Ring.CERN Yellow Reports: Monographs. CERN, Geneva.

Benedikt, M. (Ed.) et al. 2019. FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. European
Physical Journal: Special Topics 228(2), 261 623, 6 2019.

Bhattacharyya, S., Yedavalli, R.K., Kerby, J. and Mukherjee, A., 2012. Reliability Modeling Method for Proton Accelerator. Proc. IPAC 12,
Louisiana, USA.

Blaszkiewicz, M. 2022. Methods to optimize rare-event Monte Carlo reliability simulations for Large Hadron Collider Protection Systems.
University of Amsterdam, Netherlands

Blaszkiewicz, M., Apollonio, A., Cartier-Michaud, T., Panev, B., Pojer, M., Wollmann, D. 2022. Reliability Analysis of the HL-LHC Energy

Choi, S.-C. T., Hickernell, F. J., and Jagadeeswaran R. and McCourt, M. J., and Sorokin A. G. 2021. Quasi-Monte Carlo Software. arXiv.
Felsberger, L., Dorda, U., van de Walle, J., Uythoben, J., Wollmann, D. 2024. Simulation-Based Availability Optimization of Dynamic Fault

Compensation for Particle Accelerator RF-Systems Applied to the MYRRHA Accelerator Driven System. Submitted at ESREL 2024.
Felsberger, L. et al., 2023. Quantitative availability modelling for the MYRRHA accelerator driven system. Proc. IPAC'23, Venice, Italy,

5114-5117.
Felsberger, L., Apollonio, A., Cartier-Michaud, T., Montesinos, E., Olivera, J. C., Uythoven, J. 2021. Availability Modeling of the Solid-

Garvels, M. J. J. 2000. The splitting method in rare event simulation. University of Twente, Netherlands
Heron, J., Felsberger, L., Wollmann, D., Uythoven, J., Rodriguez Mateos, F. 2023. Availability Targets Scaled According to Assurance

Complexity in the FCC-ee. ATS Note: CERN-ACC-NOTE-2023-0020. CERN. Geneva. ATS Department.
Kamat, S. J., Riley, M. W. 1975. Determination of Reliability Using Event-Based Monte Carlo Simulation. IEEE Transactions on Reliability

R-24(1), 73-75, April 1975.
Kanareykin, A., Ben-Zvi, I., Castilla, A., Freemire, B., Jing, C., Macpherson, A., Poddar, S., Shipman N. 2023. Ferroelectric fast reactive

tuner for srf cavities - material properties and its applications. Proceedings of FCC Week 2023, London, United Kingdom.
Millman, K. J., and Aivazis, M. 2011.Python for Scientists and Engineers. Computing in Science & Engineering 13(2), 9-12
Nagpal, A., Gabrani, G. 2019. Python for Data Analytics, Scientific and Technical Applications. 2019 Amity International Conference on

Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 140-145.
Owen, A. B. 2003. Quasi-Monte Carlo Sampling. Jensen, H. W. (Ed.), Monte Carlo Ray Tracing: Siggraph 2003 Course 44, 69-88.
Penttinen, J.- An open modelling approach for availability and

reliability of systems. Reliability Engineering & System Safety 183, 387-399.
Pidd, M. Cassel, R.A., 1998, December. Three phase simulation in Java. In 1998 Winter Simulation Conference. Proceedings 1, 367-371,

Cat. No. 98CH36274. IEEE.
Raubenheimer, T. 2023. FCC Accelerator Overview. Proceedings of FCC Week 2023, London, United Kingdom.
REALIST, accessed 15.12.2023, https://www.ima.uni-stuttgart.de/forschung/zuverlaessigkeitstechnik/realist/, University of Stuttgart.
ReliaSoft, accessed 15.12.2023, https://www.hbkworld.com/en/products/software/analysis-
Robidoux, R., Xu, H., Xing L., and Zhou, M. 2010. Automated Modeling of Dynamic Reliability Block Diagrams Using Colored Petri Nets.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 40(2), 337-351.
Shonkwiler, R.W., Mendivil, F. 2009. Introduction to Monte Carlo Methods. Explorations in Monte Carlo Methods. Undergraduate Texts in

Mathematics. Springer, New York, NY.
Silkworth, D., Ormerod, J., 2015. Stosim, OpenReliability.org.
Sureda Pastor, P.J., 2013. Adaptation of the Availsim software to the IFMIF RAMI requirements.

Available at: http://hdl.handle.net/2099.1/20970.
Thain, D., Tannenbaum, T., Livny, M. 2005. Distributed Computing in Practice: The Condor Experience. Concurrency and Computation:

Practice and Experience 17(2-4), 323-356.
Todd, B., Apollonio, A., Niemi, A., Ponce, L., Roderick, C., Walsh, D. 2019. LHC and Injector Availability: Run 2. 9th LHC Operations

Evian Workshop, Evian Les Bains, France, 30 Jan 1 Feb 2019, 35-50.

