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Abstract 

This paper investigates the optimization of condition-based maintenance policies for systems experiencing continuous 
degradation. We address this challenge by formulating it within the framework of Markov decision process and employing 
reinforcement learning techniques to derive optimal policies based on the long-run total maintenance cost per time unit. In 
contrast to existing approaches that often discretize the continuous state space to facilitate the application of reinforcement 
learning algorithms, we directly handle the continuous state space in both problem statement and solution method, thus 
preserving its Markov property. The reward function is also carefully designed to describe real-world situations by 
incorporating the downtime cost rate. Additionally, we treat the maintenance problem as a continual task rather than an 
episodic one, enabling us to identify optimal policies that minimize the long-run total maintenance cost per time unit. The 
obtained maintenance policies exhibited a strong correspondence with the influences of the degradation process. 
Furthermore, when compared to the discretized state space, it demonstrated better performances. 
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1. Introduction 

Condition-based maintenance (CBM) is a significant category in the field of maintenance, involving 
inspections conducted on a system to gather operational data, including factors like reliability and degradation 
(Alaswad et al., 2017). Based on this information, technicians can make informed decisions about whether 
maintenance should be performed. The main objectives of CBM are to determine the optimal timing for 
inspections and the specific condition level at which maintenance actions should be implemented, effectively 
managing and reducing overall maintenance costs. There are two formulations for a CBM problem: parametric, 
structured problem, and non-parametric, sequential decision-making problem (see Figure 1). The former has 
been extensively studied, with a parameterized policy structure optimized to achieve performance metrics like 
long-run cost rate. A typical topic in this approach is the control limit policy, which is parameterized by 
replacement thresholds (Mosayebi Omshi et al., 2021) and ordering thresholds (Wang et al., 2008). This 
approach offers analytical solutions and a modular property that allows modification of initial conditions while 
retaining the same problem structure. However, it has disadvantages, including the assumption that the 
underlying process describing the system's condition is initially known, which can be challenging for complex 
systems with no suitable models. Additionally, the predefined structure of the maintenance policy may not be the 
best fit for the system. In contrast, the latter approach does not assume any system structures and defines the 
system elements and behaviors naturally. The optimal maintenance policy is determined for each state of the 
system, optimizing performance metrics. One advantage of this approach is the ability to learn the optimal policy 
through experience, using reinforcement learning (Sutton and Barto, 2020). However, a significant drawback is 
the requirement for a large amount of data to learn the optimal policy, even when the condition model is known. 
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Furthermore, this approach does not scale well when the system's state space is large or continuous. To 
overcome these challenges, some works on this direction discretized the state space (Zhang et al., 2016; Chen et 
al., 2015), or directly assumed that the state space is finite by nature (Chen et al., 2005). These studies employed 
a  discretization approach to the state space, which unfortunately fails to guarantee the 
preservation of the Markovian property within the state-action spaces. It is also worth noting that most works use 
the discounted rewards metric to solve the optimization problem. However, the discounted setting has been 
proved to find the sub-optimal policies when the discount factor is poorly chosen, especially for continual tasks 
(Tadepalli and Ok, 1998). In the context of the average reward metric, only a small number of studies in the 
CBM field have employed this approach (Peng and Feng., 2021; Adsule et al., 2020; Xanthopoulos et al., 2018; 
Ling et al., 2018) compared to the prevalent use of the discounted setting. The algorithms utilized to solve the 
MDP in these studies can be classified into three categories: R-learning (Schwartz, 1993), SMART (Das et al., 
1999), and value iteration. Among these works, Peng and Feng (2021) were the only ones to consider a 
continuous state space. They employed Gaussian processes (Rasmussen and Williams, 2008) to model the 
degradation process and approximate the value function. However, the value iteration algorithm used in their 
study, which relied on the original Bellman optimality equation for average reward, may not converge to an 
optimal solution (Mahadevan, 1996; Gosavi, 2013). To address this issue, the relative value iteration algorithm 
(White, 1963) can be utilized. The relative value iteration algorithm serves as the foundation for the SMART 
class algorithm.   

 

 

 

 

(a) Parametric approach  (b) Sequential decision-making approach 

Fig. 1. Example of parametric problem and sequential decision-making problem for CBM. The preventive maintenance threshold (PM)  
and the inter-inspection interval  are the parameters of the parametric problem.  

In sequential decision-making problem, we find a mapping from state to action so that the performance metric is optimized. 
 
This paper formulates the CBM problem as a sequential decision-making problem without assuming any 

policy structure. The problem is described as a Markov decision process (MDP), a powerful mathematical 
framework for modeling sequential decision-making problems and solving them under the long-term average 
reward metric. Traditional dynamic programming methods like value iteration (VI) or policy iteration (PI) are 
applicable only to finite state-action spaces. Hence, many studies attempt to discretize the state space and utilize 
VI and PI as aforementioned. However, this approach sacrifices the Markovian property of state space (Wiering 
et al., 2012). In contrast, this paper directly addresses the continuous properties of the state space while 
preserving its Markovian property. 

2. Problem description 

We investigate an offline CBM planning problem for a single-unit system that undergoes continuous 
degradation over time. The degradation level of the system can only be determined through periodic inspections 
carried out at fixed intervals of  time units. The degradation level can only be revealed through inspection. We 
also make the assumption that the failure stage is not self-announcing. If this level exceeds a predetermined 
threshold , the maintenance engineer (referred to as the agent) is only allowed to perform corrective 
maintenance on the system. Alternatively, if the level is below this threshold, the agent must decide between 
conducting preventive maintenance or forgoing maintenance altogether. It is assumed that both corrective 
maintenance and preventive maintenance will restore the system to its original, new condition. That is, both the 
degradation level and the age of the system are zeros. At each inspection epoch, the agent incurs certain 



   

maintenance costs. These costs are calculated based on the current state of the system and the most recent state-
action pair. Initially, the agent must incur fixed costs according to the chosen maintenance action: 

 if the agent selects no maintenance (NM), they are solely responsible for the inspection cost ; 
 if the agent opts for preventive maintenance (PM), they must cover both the preventive maintenance cost 

and the inspection cost; the total cost, which encompasses both of these expenses, is represented as ; 
 if the agent decides on corrective maintenance (CM), they have the responsibility of covering both the 

expenses related to the corrective maintenance itself and the associated inspection; these costs, when 
combined, are referred to as . 

Furthermore, depending on the current state of the system, additional costs may arise. If the degradation level 
exceeds the threshold , the agent must bear downtime costs due to system failure between the current inspection 
and the most recent previous inspection. Conversely, if the degradation level does not exceed the threshold, no 
additional costs are incurred. This CBM planning issue can be perceived as a sequential decision-making 
problem, with the objective of identifying the optimal maintenance policy that minimizes the average cost rate of 
maintenance. To address this problem, we will employ the MDP framework to formulate the CBM problem and 
utilize the modified relative value iteration algorithm to solve the MDP and obtain the optimal solution. 

In an MDP-based problem, we have an agent interacting inside an environment and being rewarded for each 
action it takes in this environment. Formally, a discrete-time MDP is 4-tuple :  is the state space 
containing all possible states of the environment;  is the action space including all possible actions that the 
agent can perform in this environment;  is the immediate reward function, it is a 3-argument function 
that computes the reward that the agent can receive when performing action  in state , resulting the next state 
is ; and  is a model of the environment, given the current state and the current action, the model 
provides us the information about the next states that the agent can transition to. The agent interacts with the 
environment using a policy , which is a mapping from state to action:  (we only consider stationary 
deterministic policy in this problem). To solve an MDP is to find an optimal policy  that optimizes a metric of 
interest (total discounted rewards, average reward per action taken, etc.). 

2.1. State space  

The MDP environment in this context corresponds to the degrading system under consideration. Given that 
the degradation process is non-stationary, it becomes necessary to incorporate the system's age alongside the 
degradation level to accurately determine its current operational condition. For instance, assuming a convex 
degradation curve, a system with low degradation level and low age would pose minimal risk of failure in the 
near future. On the other hand, even if the degradation level is low, a system with high age would carry a higher 
risk of approaching the failure stage soon (see Figure 2). Consequently, a system's state at a time index  
can be represented as a two-element vector , where  denotes the degradation level at time 

, and  indicates the age of the system at time . Thus, the state space is defined as , encompassing 
non-negative values in a two-dimensional Euclidean space. For a degradation level , if it exceeds a pre-
defined failure threshold , we consider the system is in the failure stage. 

 

   
(a) Convex degradation paths (b) Linear degradation paths (c) Concave degradation paths 

Fig. 2. Different degradation paths. For each case, we simulate 1000 degradation paths, the blue solid lines represent the mean paths. 

2.2. Action space  

Within this environment, the agent has the capability to undertake three distinct maintenance actions, each 
represented by an integer value: no maintenance (0), preventive maintenance (1), and corrective maintenance (2). 



   

The action space, denoted as , is defined as . To indicate the available actions in a given state , 
we use the notation . Specifically, we assume the following mappings: 
 

                                                            (1) 

 

Regarding the effects of preventive maintenance and corrective maintenance, both actions will result in an 
immediate transition of the system to the state [0, 0] at the current time step. More formally, at time , let  

 and  represent the degradation level and age of the system before taking any maintenance action. 
Similarly, let  and  denote the degradation level and age of the system immediately after the completion 
of maintenance. In these cases, the followings hold true:  and  if corrective or preventive 
maintenance is implemented, and  if no maintenance is undertaken (see 
Figure 3 for an illustration). When mentioning  or  without any additional clarification, we adopt the 
convention that we are referring to  and . 
 

 

Fig. 3. Effects of maintenance actions. At decision time , after inspection, we make a decision to have no maintenance (NM (0)). 
Therefore, we have  and . At decision time , after inspection, we know that   
and . Then we decide to conduct corrective maintenance (CM (2)). Thus,  and . At , we conduct 

preventive maintenance (PM (1)). In this case, we can derive ,  and ,  in a similar manner when CM is chosen. 

2.3. Model  

We start this part by introducing the gamma random variable (Van Noortwijk, 2009), which will be 
extensively employed in subsequent analyses. A random variable  that adheres to a gamma distribution is 
denoted as . The gamma distribution represents a continuous probability distribution, characterized 
by the subsequent probability density function: 

 

                                                                                                                         (2) 
 

where  and  are two positive constants called the shape and the scale parameters, respectively. 
The natural degradation process is modelled by a non-stationary gamma process  with the shape 

function  and the scale parameter . A gamma process is a jump process with independent increments.  
At two distinct time  and  that satisfy , the increment in degradation level   
is a gamma random variable with shape parameter  and the scale parameter , that is  

 (Kahle et al., 2016). Remember that when preventive maintenance or corrective 
maintenance is conducted at time step , the age and the degradation level will drop to zero at the same time 
step, that is  (see the action space section above). In general, . In this 
problem, the model  is the probability density function (PDF) for the next degradation level , given the 
current state  and the current action . Regarding the next age of the system, since the 
inter-inspection interval is fixed, we can easily compute the next age deterministically as .  
If , the PDF of the next degradation  is: 
 

     (3) 



   

When  or , we have the same PDF for these two actions as their effects are the same (note that the 
costs for these two actions are still different): 
 

             (4) 

2.4. Immediate reward function  

Before defining our immediate reward function, we discuss a little on the reward function. Some works 
consider the reward function as a 2-argument function  (Yousefi et al., 2022; Adsule et al., 2020). This 
kind of reward function will be problematic if we consider the downtime cost. In this case, we can only treat the 
downtime cost as a constant as we do not have enough information to compute the (expected) downtime between 
two states  and . Thus, we define the immediate reward function in our work 
as a 3-argument function and prove that it is a better approach. Given two consecutive time steps  and , the 
immediate reward function  computes the reward  for performing action  in state  
and then transitioning to state . In comparison to certain existing studies that assume a constant 
downtime cost, our approach recognizes the dynamic nature of real-world scenarios. We account for the 
downtime duration resulting from failures, understanding that extended periods of downtime correspond to 
higher financial losses. We define the following one-step reward function (recall that a state  is a two-
component vector: ): 

 

                               (5) 

 

In Eq. (5), , ,  and  are the inspection cost, preventive maintenance cost, corrective maintenance cost, 
and the downtime cost rate, respectively. We utilize the notation  to represent the 
duration of system downtime between time steps  and , considering the specific action , as well as the 
states  and . As the failure stage is not self-announcing, the duration of downtime  is subject 
to randomness and can be considered as a random variable. Consequently, it is appropriate to utilize the concept 
of expectation  to quantify this quantity. The expression  represents the indicator 
function that signifies whether the degradation level  of the state  surpasses the failure threshold . If 
the triplet  is known, it is possible to calculate the expected downtime duration analytically. The 
process for deriving this expectation will be presented below. Additionally, we make the assumption that at time 
step , the system is consistently in an as-good-as-new state denoted as , and the agent always 
selects action . Furthermore, it can be seen that in the immediate reward function, we can observe that 
there is always a deterministic part , , or , depending on the corresponding maintenance action. This part 
only depends on the current state  and the current action , we use the notation  to denote this part. 

The remaining work in this part is to compute the expected downtime . Clearly, 
 if . Considering the case ,  between age  and age , 

the system must be in the failure stage for some period. Let  be a degradation level where  satisfies  
. Then  where  is a beta distributed random 

variable with two shape parameters  and . We can obtain the CDF of 

 as  where  is the CDF of . Let  be the indicator 

function for the event  at age . Then the downtime between 

age  and age  is . The expectation of 

 is 
 

                                      (6) 
 



   

Additionally, when the immediate reward function is a 3-argument function, we can straightforwardly derive 
that the expected reward for a state-action pair is a composition of an immediate reward for taking an action and 
a transitioning reward between current state and possible future states. This can be sketched as follows.  
Let  be the expected reward that the agent can receive for the state-action pair  where 

. We have that: 
 

                                          (7) 
 

Note that when  is chosen, we immediately know the next age . Thus, we only need to determine the next 
degradation level . The model  is just the probability density function for the next 
degradation level . Therefore, we can abuse the notation and write: 
 

 

 

The last integral in Eq. (8) represents the expected downtime between the current inspection and the next 
inspection epoch, given the current state-action pair. We can denote this quantity as . Instead of 

plugging the results of Eq. (6) to Eq. (8), we can compute  in an easier way. Let  be the 
degradation level of the system at age . After maintenance action  is carried out, the current age will be  
and the next age will be . Let  be the indicator function for the event: the 
degradation level  at age  is greater than or equal to , given the current degradation  is . Then the 
downtime between age  and age ( , given the current state-action pair  is: 

 

                                                                                                                        (9) 
 

Clearly,  is a random variable. Utilizing the independent increment property of gamma process, we can 
compute its expectation as follows: 

 

In Eq. (10),  is the cumulative distribution function of the gamma distributed random 
variable with shape parameter  and the scale parameter . It is evident that the three-argument 
reward function significantly encapsulates a broader range of information pertaining to the interaction between 
the agent and the environment, thereby facilitating a more accurate derivation of the optimal value function. 

2.5. Optimization metric and algorithm 

In this MDP, we try to optimize the average reward instead of the popular total discounted reward metric. 
This is because in continual tasks where there are no terminal states like the CBM problem, the discounted 
rewards appear to be problematic (Tadepalli and Ok, 1998). Under a policy , the average reward  and the 
value function  of a discrete-time MDP are defined, respectively, as: 

 

 

 

 



   

Equation (12) represents the expected total extra rewards that the agent can receive starting from state . 
The value function for policy  satisfies the following Bellman equation: 

 
 

In our specific problem, the reward corresponds to the maintenance cost. Since we define the cost to be non-
negative, our objective is to minimize the average cost in the optimization problem. Consequently, the optimal 
policy  is the policy that yields the lowest average cost among all other policies . And under , 
we obtain the Bellman optimality equation: 
 

 
 

Once the optimal average cost per action  is obtained, we can easily convert it to the average reward per time 
unit by dividing it by the inter-inspection interval . Note that this only works for periodic inspection case. In 
this paper, we utilize relative value iteration for continuous state space proposed by Sharma et al. (2020), with 
some modifications to fit with the problem of interest. The pseudocode for the algorithm is given in Algorithm 1. 
 

Algorithm 1. Model-based approximate relative value iteration for continuous state MDP 

Approximate relative value iteration for continuous state MDP 
 Input:  evaluating points , a small positive number ; a regression method :  has two sub methods, a 

fitting method  to fit the data points , and a prediction method  to predict the value  
of : ; a positive number  denotes the maximum iteration for the algorithm. 

 Initialization: set all  to arbitrary values, e.g., zeros, fit , set  and  to a large positive number. 
 While  and : 

   
 For  

  

  

 Call the fit method   

  
  

 
In this algorithm,  is the approximate Bellman operator as the value function is not expressed in an exact form 

but rather in an approximate form. It is defined as: .  

The superscript  in , ,  denote the -th iteration of the algorithm. 

3. Numerical results 

We employ the k-nearest neighbours (KNN) regression (Kramer, 2013) as our chosen regression method.  
In this approach, we consider a total of  nearest neighbors, and the weight assigned to each neighbor  
is determined by the distance between the evaluating point and that particular neighbor. To illustrate  
the dependence of optimal policies on the shape of the degradation process, we utilize three gamma processes 
with the same rate parameter , but different shape functions. Specifically, we use  for the 
convex degradation path,  for the linear degradation path, and  for the concave degradation 
path. The replacement threshold is . The costs for each action and the downtime cost rate are given  
in Table 1. 

 
Table 1. Costs of maintenance actions. 

Inspection cost  Preventive maintenance cost  Corrective maintenance cost  Downtime cost rate  
2 50 100 75 

 
Some examples of the results for  are shown in Figure 4 and 5. In Figure 4, we present the optimal 
value functions. Since we perform inspections at discrete time intervals of , the age dimension is limited to 
discrete values such as , , and so on. On the other hand, the degradation level for each age can take 
continuous values. Consequently, the value function can assume continuous values along this dimension. Once 
we have obtained the optimal value function, we can utilize the Bellman optimality equation (14) to determine 



   

the optimal policy. Figure 5 depicts the optimal action for each state , with each marker indicating the 
recommended action for that particular state. When considering a particular age, it becomes evident that the 
optimal policy involves implementing preventive maintenance (PM) when the degradation level surpasses a 
certain optimal threshold (called the PM threshold). Conversely, if the degradation level falls below the 
threshold, the optimal approach suggests refraining from any maintenance activities (NM). In the linear 
degradation case, the optimal policy is determined by a single optimal PM threshold for all ages. Therefore, in 
this scenario, the optimal policy solely relies on the degradation level . In the convex degradation case, the 
degradation rate increases significantly with age, resulting in the optimal PM thresholds decreasing as the ages 
increase. In contrast, in the concave degradation case, the degradation level increases rapidly from an initial, as-
good-as-new state. However, over time, the degradation rate slows down. Consequently, the optimal PM 
threshold for this case decreases as the ages progress.  

(a) Convex case (b) Linear case (c) Concave case

Fig. 4. Optimal value functions for different degradation shapes with fixed .
 

(a) Convex case (b) Linear case (c) Concave case 

Fig. 5. Optimal policies for different degradation shapes with fixed .  
 

(a) Convex case (b) Linear case (c) Concave case 

Fig. 6. Optimal inter-inspection interval for different degradation shape. 



   

For the optimal inter-inspection interval , we conducted searches over different values of  on the interval 
. The optimal  for each is show in Figure 6. In the case of convex and linear scenarios, there exist two 

optima for the inspection interval. However, the global optima consistently correspond to the ones with smaller 
values, thus indicating that condition-based maintenance outperforms time-based maintenance. The alternative 
optima in these cases consistently align with the optimal policy of replacing the system at the inspection epoch 
(i.e., time-based maintenance). When considering an increase in the inspection cost, it is important to highlight 
that the global optimum will progressively rise as well. For instance, in the convex case, let's take the inspection 
cost  as an example. In this case, the optimal inspection interval converges to approximately 12. This 
observation suggests that when inspection costs are relatively high, favoring a time-based maintenance strategy 
becomes more advantageous for such scenarios. We conducted a comparison with the widely utilized 
discretization approach. To simplify the analysis, we focused on a linear degradation path that is solely 
influenced by the inter-inspection interval , rather than the age. The continuous degradation was discretized 
into  equidistant states. In this discretization scheme, degradation within the interval  corresponds to 
state ,  corresponds to state , and so on. The interval  is treated as state . To solve the 
discretized states MDP, we utilized the relative Q-learning algorithm for finite state space, as proposed by 
Gosavi (2013). Furthermore, to establish a baseline for comparison, we employed the well-known parametric 
approach  (e.g., Huynh et al., 2011). The results are presented in Table 2. Within each cell, the number 
inside the brackets represents the replacement threshold, while the other number denotes the average 
maintenance cost per time unit. It is worth noting again that for the discretized versions, each state represents an 
interval, as aforementioned. For instance, state  corresponds to the interval , and if  is set as the 
replacement threshold, preventive maintenance is implemented in every state equal to or greater than  (except 
for the failure threshold , which we always conduct preventive maintenance). Additionally, for the continuous 
state MDP, we provide both the average maintenance cost obtained through the algorithm and the average 
maintenance cost computed via Monte Carlo simulation. In the majority of cases, the algorithm demonstrates its 
effectiveness in generating accurate outcomes, as indicated by the relatively small discrepancy between 
theoretical results and simulations. Moreover, when comparing the discretized state space with the continuous 
state space, it becomes apparent that preserving the original state space generally results in superior average 
maintenance costs. 
 

Table 2. Average reward for different inter-inspection interval for continuous and discretized state spaces. 

   1 2 3 4 5 
Parametric (simulation) (11.8) 5.81320 (11.2) 5.25047 (10.1) 5.12747 (9.1) 5.22509 (8.0) 5.41636 
MDP (continuous, algorithm) (11.9) 5.99022 (10.8) 5.27072 (9.9) 5.18652 (8.9) 5.27464 (8.0) 5.44408 
MDP (continuous, 
simulation) 

(11.9) 5.86753 (10.8) 5.26158 (9.9) 5.18643 (8.9) 5.25839 (8.0) 5.41708 

MDP (discretized, simulation) (5) 6.02045 (4) 5.35443 (4) 5.15926 (4) 5.39509 (3) 5.47418 

4. Conclusions and future works 

In this paper, we propose an approach to solving the CBM problem modelled as an MDP without discretizing 
the state-action spaces, thereby preserving their Markov property. Additionally, we have designed the reward 
function to effectively capture real-world situations. This approach demonstrates significant potential, as it 
allows for adapting degradation models to meet specific requirements while keeping the solution approach 
unchanged. The results obtained from the algorithms and the Monte Carlo simulation are in strong agreement. 

For future work, given that the maintenance duration in this study is assumed to be negligible, we can further 
consider this duration to be sufficiently large for practical considerations. Furthermore, it is important to note 
that the preventive maintenance action is assumed to have a perfect effect, which is not typically the case in most 
real-world situations. Hence, in future studies, we can consider incorporating an imperfect repair model. 
Additionally, by changing the inspection period to non-periodic intervals, we can provide the agent with more 
flexible choices. This modification transforms the problem into a semi-Markov decision process problem. 
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