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Abstract 

In the Quantitative Risk Assessment (QRA) of Oil & Gas (O&G) plants, the Ignition Probability (IP) following a release of 
flammable gaseous material can be estimated by the MISOF (Modelling of Ignition Sources on Offshore oil and gas 
Facilities) model, that requires time-consuming simulations (e.g., by Computational Fluid Dynamic (CFD)) for calculating 
the flammable volume released. By this way, only a limited number of accidental scenarios can be considered, which may 
lead to inaccurate IP estimates. To overcome this limitation, in this work a Bayesian Regularized Artificial Neural Network 
(BRANN) is proposed together with a pre-processing of the input data to match the training data. This enables the BRANN to 
provide accurate IP estimates. The results obtained in the case of a separator unit of a real O&G plant demonstrate the 
applicability of the BRANN, its ability to outperform conventional piecewise polynomial regression with a reduced number 
of CFD simulations. 
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1. Introduction 

The escalation of fires following a Loss Of Primary Containment (LOPC) is one of the main concerns in the 
Oil & Gas (O&G) industry (ISO 17776, 2016). Estimating the Ignition Probability (IP) following the release of 
flammable gaseous material is necessary for the Quantitative Risk Assessment (QRA) of O&G plants and can be 
done, using the MISOF (Modelling of Ignition Sources on Offshore oil and gas Facilities) model (MISOF, 2018; 
Cincotta et al., 2021). Computational Fluid Dynamic (CFD) simulation is used to calculate the time-dependent 
flammable volume released, to be provided in input to the MISOF model (Agranat et al., 2007; Zhang and Chen, 
2010). CFD simulations are time demanding and considering a limited number of accidental scenarios can 
possibly lead to inaccurate IP estimates (Jin and Jang, 2018; Vianna and Cant, 2012). To overcome this 
limitation, a Bayesian Regularized Artificial Neural Network (BRANN) has been proposed in (Di Maio et al., 
2021a). The BRANN can be trained with a limited number of CFD simulations available and once trained it can 
be used in accidental scenarios with input values (e.g., release source, ignition source, confinement level, 
congestion level, wind strength, gas mixture, LOPC hole size and number of detectors) similar to those of the 
training dataset. This may not be the need in practice, in particular for the LOPC hole sizes to consider for the IP 
calculation. In this work, we develop a preprocessing strategy for calculating an equivalent of a generic LOPC 
hole size to match one available in the training dataset, so as to allow using the BRANN also for input values 
different from those of the training dataset. 

The proposed method is applied to one of the separator functional units of a real O&G plant trained with a 
limited dataset of input-output patterns. The results demonstrate the enhanced applicability of the BRANN 
enabled by the preprocessing strategy that calculates the equivalent LOPC hole. 

The paper is organized as follows: Section 2 recalls the MISOF model, Section 3 presents the regression 
model approach typically used, Section 4 describes the novel BRANN, Section 5 shows the results of its 
application to the case study and in Section 6 conclusions are drawn. 
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2. The MISOF ignition model 

In general terms, the IP hereafter symbolically indicates as  is defined as the product of the probability of 
exposure  of a live ignition source to a flammable atmosphere and the probability of ignition given such 
exposure  (MISOF, 2018): 

(1)  

In this work, for simplicity and without loss of generality, we conservatively assume that , so that 
.  

The MISOF approach is used to evaluate 
ignition mechanisms (IOGP 434-06, 2019), Figure 1. 
 

Fig. 1. P(I|E) contributions according to MISOF model. 

2.1. Immediate ignition 

Immediate ignition mechanisms are those occurring immediately after the LOPC, before the flammable cloud 
is formed, and can cause Jet Fires (JFs) or Pool Fires (PFs), depending on the pressure of the system. The 
immediate IP, , is evaluated accounting for two main contributions (MISOF, 2018), whose values 
considered in this work are listed in Table 1: 

 pump immediate ignition contribution, accounting for ignition caused by leaking pumps; 
 other immediate ignition contributions, accounting for ignition caused by any other equipment. 

Table 1.  of different contributions. 

Immediate ignition source  
Pumps 0.072 
Other 0.0007 

2.2. Delayed ignition 

Delayed ignition mechanisms are those occurring after the formation of a flammable cloud following the 
LOPC and can cause Flash Fires (FFs) or Explosions (EXs), depending on the congestion level of the area. 
Typically, the time-dependent behavior of the flammable cloud is discretized into  time steps, each of duration 

, and two different types of delayed ignition mechanisms are considered: continuous and discrete. Continuous 
ignition sources are those that are always present (e.g., a flame or a hot surface) and ignite the flammable cloud 
at the moment of the exposure. Discrete ignition mechanisms are those that are effective only at distinct instants 
(e.g., portab Non- ). Both mechanisms can be caused by rotating machinery (such as pumps and 
compressors), electrical components (such as high voltage instruments) and others (including any source which 
is not rotating machinery nor electrical equipment). The continuous delayed IP  and the discrete delayed IP 

 at the i-th time step  are calculated as follows (MISOF, 2018): 
                   (2) 

                   (3) 



   

where  is the expected number of ignitions per  of flammable volume due to continuous ignition 
mechanisms,  is the expected number of ignitions per  is 
the new volume of flammable material exposed to the flammable cloud during the -th time step,  is the 
total flammable volume exposed at the i-th time step and  and  are the fractions of continuous and 
discrete ignition sources active in the area, respectively.  and  are evaluated by adding the contribution of 
each piece of equipment depending on its category (see Table 2 and Table 3 (Cincotta et al., 2021)). The fraction 
of continuous and discrete ignition sources, and , respectively, active at the considered i-th time 
step depends on the safety barriers of Isolation & Depressurization (I&D) set up for deactivating and isolating 
ignition sources in the presence of a detected flammable leakage. 

Table 2. Parameters for continuous delayed IP evaluation. 

Equipment category  
Rotating machinery 3.70e-6  
Rotating machinery (per item exposed) 3.70e-3  
Electrical equipment 1.80e-6  
Other 6.00e-7  

Table 3. Parameters for discrete delayed IP evaluation. 

Equipment category  
Rotating machinery 1.50e-9  
Rotating machinery (per item exposed) 3.70e-6  
Electrical equipment 1.50e-9  
Other 1.20e-8  

2.3. Total Ignition probability 

At each time step , the total IP  is calculated as: 

                     (4) 

where  is: 

                     (5) 

The total ignition probability  throughout the whole LOPC transient is, then, calculated as: 

                                      (6) 

To calculate the volumes  and , time-consuming CFD simulations are required (e.g., with the 
FLACS software (Sajid et al., 2021)), to provide the input to MISOF (Figure 2). 

 

 
Fig. 2.  calculation sketch. 



   

3. Regression model for IP estimation 

3.1 Polynomial regression models 

Given a dataset of  input patterns { }, a linear regression model to estimate  can be written as: 

                                                   (7) 

where  is the estimated total IP and  are the coefficients of the basis functions . In the case 
of polynomial regression, the basis functions take the form . Piecewise polynomial basis functions 
can be defined to divide the input space into regions (Hastie et al., 2001). The defined basis functions are, then, 
fitted by minimizing the Mean Squared Error (MSE): 

                                               (8) 

where  is the error of the output estimate  with respect to the target value  of the z-th pattern. 
Figure 3 shows the input and output of the polynomial regression model for IP estimation considered in this 
work. 
 

 

Fig. 3. Polynomial regression inputs and output. 

3.2 Bayesian Regularized Artificial Neural Networks 

BRANNs have been introduced to limit the problem of overfitting of traditional ANNs (Shi et al., 2018). 
Instead of minimizing only the MSE between the output estimates and the target values, BRANNs minimize the 
weighted sum of the MSE and of a second term ( ) that accounts for the uncertainty in the model weights 
(Bishop, 2006): 

                                                   (9) 

                                                  (10) 

where  is the objective function,  and  are hyper-parameters to be tuned,  is the number of weights and 
 is the number of input-output patterns. 
Furthermore, Bayesian inference is used to update the density function of the weight vector : 

                                                  (11) 

where Gaussian approximations are used for the conditional probability distributions  and . 
Then, the optimal weights are found by maximizing (11) (which corresponds to minimizing (9)), and the optimal 
values of  and  are calculated with the following equations: 



   

                                                           (12) 

                                                           (13) 

where  is a measure of the number of parameters effectively used by the BRANN (i.e., the model weights that 
are not set to zero by the regularization process) to avoid overfitting and is found with an iterative procedure 
since it depends on . 

4. The novel BRANN 

In (Di Maio et al., 2021a), a BRANN has been developed for IP estimation. This BRANN is capable of 
providing accurate IP estimates only when fed with input values similar to those of its training dataset. To extend 
the applicability of the BRANN metamodel to accidental scenarios with different LOPC hole sizes, the following 
strategy (shown in Figure 4) has been developed. For each functional unit and for each possible LOPC hole size 

: 
 a suitable simulation software (e.g., Phast (Chen, 2020)) is run to calculate the peak gas leak flow rate 

 (i.e., the leak flow rate at ) resulting from a LOPC in the selected functional unit with the due 
hole size; 

  is compared with the peak gas leak flow rate  resulting from the hole sizes ( ) used to train the 
BRANN; 

 a conservative (i.e., with a larger leak flow rate) equivalent hole size ( ) is calculated and fed to the 
BRANN, by selecting the smallest  generating . 

 

Fig. 4. Novel MISOF calculation approach. 

5. Case study 

As an example of application, let us consider a typical O&G plant, where the following functional units are 
installed: 

1. Inlet manifold, with oil and gas as working fluids; 
2. Test separator A, with oil and gas as working fluids; 
3. Test separator B, with oil and gas as working fluids; 
4. Test separator C, with oil and gas as working fluids; 
5. Separator 1, with oil and gas as working fluids; 
6. Separator 2, with oil and gas as working fluids; 
7. KO drum torch, with oil and gas as working fluids; 
8. Gas boat, with oil as working fluid; 
9. Booster pump, area manifold with oil as working fluid; 
10. Gun barrel, with oil as working fluid; 
11. Fluxing manifold, with oil as working fluid; 
12. Gas network, with gas as working fluid; 
13. Steam production boiler, with gas as working fluid. 

 



   

LOPC is considered to occur in the separator Test separator , with hole sizes  of 
, ,  and , where only gas is the working fluid. 

A state-of-practice variance-based sensitivity analysis (Saltelli et al., 2009) has been performed to reduce the 
number of inputs to the BRANN. As a result, the number of detectors ( ) has been neglected because not 
contributing enough to the variance of , as shown in Table 4, where the  of the  inputs are 
listed. It is important to note that the sensitivity analysis has not been performed for inputs  and  (release 
source and ignition source, respectively), since they cannot be removed from the analysis. 

 
         Table 4. Sensitivity analysis results ( ). 

BRANN input  
 0.9180 
 0.0090 
 0.0092 
 0.0620 
 0.0014 
 0.00036 

 
A BRANN has, then, been trained, composed of an input layer, three hidden layers (with 80, 60 and 40 

neurons) and an output layer with 1 neuron. Table 5 reports the four types of confinement schemes, six levels of 
environmental congestion, two atmospheric conditions, three flammable cloud compositions, four LOPC hole 
sizes originated from three possible types of release sources in presence of four different types of ignition 
sources considered. This amounts to 20376 working configurations and hazardous conditions to be considered. 
Among these, only 14263 random configurations have been simulated by CFD, constituting an enough dense 
training dataset (as shown in (Di Maio et al., 2021a)). 

Table 5. BRANN input variables. 

Input variable Input name Values 

 LOPC hole size 

 
 
 
 

 Confinement level of the 
plant 

 
 
 
 

 Congestion level of the plant 

0 
0.3 
0.7 
1 

1.3 
1.7 

 Wind strength  
 

 Gas mixture 
 
 
 

 Release source 
 
 

 

 Ignition source 

 
 

 
 

 
To use the trained BRANN for LOPC hole sizes of the separator different from those of the training dataset, 

the preprocessing described in Section 4 has been applied. In particular,  has been calculated with a 
commercial tool for each , to be compared with  that are the peak leak flow rates of the hole sizes used for 
the training of the BRANN, that result from facilities and equipment different from those here considered.  
The procedure to find the conservative hole sizes is sketched in Figure 6. For example, for  and 

, the equivalent hole size is conservatively taken equal to  (assuming that, in both 
cases  is equal to , that is the one that FLACS takes for ), and for  and 

 the equivalent hole size is conservatively taken equal to  (assuming that, in both 



   

cases  is equal to , that is the one that FLACS takes for ), as also summarized in 
Table 6. 

 
Fig. 6. Leak flow rate comparison. 

Table 6. LOPC hole sizes equivalence. 

  
  
  
  
  

 
The novel approach is tested on the four input batches (  with ) listed in Table 7, representative 

of typical configurations of hole sizes, confinement levels, congestion levels, wind strengths, gas mixtures, 
release sources and ignition sources that might occur in the neighborhood Test separator , and the IP 
estimates obtained are compared to those provided by a polynomial regression fitted on the same dataset and 
with the true value retrieved from the full dataset of FLACS simulations (Figure 7). The BRANN provides IP 
estimates for all four batches of input with much larger accuracy ( ) than the 
polynomial regression ( ), that incidentally also overestimates the true IP. 

 
Table 7. BRANN input sequences Test separator  

        

 5 mm A 0.7 2F Light General All 

 5 mm A 0.7 5D Light General All 

 20 mm A 0.7 2F Light General All 

 20 mm A 0.7 5D Light General All 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 7. IP estimates comparison. 

The practical applicability of the BRANN for in field risk assessment is shown by the savings of 
computational time: for each input combination ( ) the IP estimation with the MISOF model and CFD 
simulations requires several hours, while the BRANN only takes  seconds on a commercially available 
laptop equipped with an AMD Ryzen 5 PRO 4650U processor. 

6. Conclusions 

For QRA of O&G plants, IP can be estimated with the MISOF model, which requires time-consuming CFD 
simulations to calculate the flammable volume released. To address this issue, this work builds upon a previous 
approach based on a BRANN to further extend its applicability by proper preprocessing of the input LOPC hole 
size. The results obtained on a real case study show that the preprocessing strategy extends applicability to 
LOPC hole sizes of values different from those of the training dataset. The developed method will find practical 
application through the development of an operational risk assessment tool (for example, being embedded into 
(Di Maio et al., 2021b)) for assessing the risk associated with fires and explosions in O&G facilities. 

References 

Agranat, V., Tchouvelev, A. V., Cheng, Z., Zhubrin, S. V. 2007. CFD Modeling of Gas Release and Dispersion: Prediction of Flammable 
Gas Clouds. In Advanced Combustion and Aerothermal Technologies, 179 195. Springer Netherlands. https://doi.org/10.1007/978-1-
4020-6515-6_14 

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer New York, NY. 
Chen, Y. 2020. Consequence Simulation and Risk Assessment Model of Liquid Ammonia Leakage Accident Based on PHAST Software. 

2020 International Conference on Advance in Ambient Computing and Intelligence (ICAACI), 125 129. 
https://doi.org/10.1109/ICAACI50733.2020.00032 

Cincotta S., Crivellari A., La Rosa L., Decarli L. 2021. MISOF Model: A novel approach for ignition probability estimation in offshore 
installations. 15th OMC Med Energy Conference and Exhibition. 

Di Maio, F., Scapinello, O., Zio, E., Cincotta, S., Crivellari, A., Decarli, L., Rosa, L. 2021a. A Bayesian Regularized Artificial Neural 
Network for the Estimation of the Ignition Probability in Accidents in Oil & Gas Plants, 2310 2314. https://doi.org/10.3850/978-981-
18-2016-8_703-cd 

Di Maio, F., Scapinello, O. Zio, E., Ciarapica, C., Cincotta, S., Crivellari, A., Decarli, L., Rosa, L. 2021b. Accounting for Safety Barriers 
Degradation in the Risk Assessment of Oil and Gas Systems by Multistate Bayesian Networks. Reliability Engineering and System 
Safety. https://doi.org/10.1016/j.ress.2021.107943 

Hastie, T., Tibshirani, R., Friedman, J. 2001. The Elements of Statistical Learning. Springer. 
IOGP 434-06. 2019. Ignition probability, International Association of Oil & Gas Producers. 
ISO 17776. 2016. Petroleum and natural gas industries - Offshore production installations  Major accident hazard management during the 

design of new installations. 
Jin, Y. L., Jang, B. S. 2018. Probabilistic explosion risk analysis for offshore topside process area. Part I: A new type of gas cloud frequency 

distribution for time-varying leak rates. Journal of Loss Prevention in the Process Industries 51, 125 136. 
https://doi.org/10.1016/j.jlp.2017.12.008 



   

MISOF. 2018. Modelling of ignition sources on offshore oil and gas facilities  MISOF, Report for Norwegian Oil and Gas Association, 
Report no: 107566/R2. https://offshorenorge.no/contentassets/067198d80b9c4b039b879bd0c8ae42bf/107566_r2_final_.pdf 

Sajid, Z., Khan, M. K., Rahnama, A., Moghaddam, F. S., Vardhan, K., Kalani, R. 2021. Computational fluid dynamics (Cfd) modeling and 
analysis of hydrocarbon vapor cloud explosions (vces) in amuay refinery and jaipur plant using flacs. Processes 9(6). 
https://doi.org/10.3390/pr9060960 

Saltelli, A., Chan, K., Scott, E. M. 2009. Sensitivity Analysis. Wiley. 
Shi, J., Khan, F., Zhu, Y., Li, J., Chen, G. 2018. Robust data-driven model to study dispersion of vapor cloud in offshore facility. Ocean 

Engineering 161, 98 110. https://doi.org/10.1016/J.OCEANENG.2018.04.098 
Vianna, S. S. V., Cant, R. S. 2012. Explosion pressure prediction via polynomial mathematical correlation based on advanced CFD 

Modelling. Journal of Loss Prevention in the Process Industries 25(1), 81 89. https://doi.org/10.1016/j.jlp.2011.07.005 
Zhang, B., Chen, G. M. 2010. Quantitative risk analysis of toxic gas release caused poisoning - A CFD and dose-response model combined 

approach. Process Safety and Environmental Protection 88(4), 253 262. https://doi.org/10.1016/j.psep.2010.03.003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
 
 
 
 
 
 
 
 
 
 
 
 


