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Abstract 

The survival signature summarises the reliability structure of a system from which various reliability metrics can be 
computed. The availability of the survival signature facilitates new and more efficient types of reliability assessment for 
complex systems, such as those with component failure dependencies, compared to traditional approaches. However, for 
complex systems with many components and multiple component types, obtaining the exact signatures can be infeasible. 
Monte-Carlo simulation enables the computation of estimates, however obtaining accurate results can be computationally 
expensive. In this paper, a novel method for estimating the survival signature of general coherent systems with any number of 
component types through simulation is introduced. This is based on a depth-first search through a conceptualised 
representation of the survival signature as a directed acyclic graph, where nodes represent indices and edges represent the 
failure of a component of a certain type. The efficiency of the simulation is increased by eliminating redundant computation 
of the system state for a given component state vector based on the already known states at neighbouring indices and 
coherent nature of the system. On a benchmark network reliability problem, after 200000 system state evaluations, it 
achieved a mean absolute percentage error in the estimated signature compared to the true signature of 4.49% compared to 
7.17% or greater from existing simulation methods. 
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1. Introduction 

The survival signature was introduced by Coolen and Coolen-Maturi (2012) as an extension of the system 
signature (Boland and Samaniego, 2004) to simplify the analysis of reliability for complex coherent systems 
with multiple types of components that each have exchangeable failure times. The survival signature provides a 
summary of the reliability structure function, completely separate from the probabilistic information on 
component failure times. Some recent applications include reliability assessment of the hydraulic system in wind 
turbines (Li et al., 2020),  importance analysis of uncertain systems with common cause failures (Mi et al., 
2020), and reliability analysis of general phased mission systems (Huang et al., 2018). Methods for efficiently 
computing the exact survival signature of systems have been presented in the past, including a method for 
computing the survival signature from a binary decision diagram representation of the system reliability structure 
(Reed, 2017) (e.g. derived from a system fault tree) and for k-terminal network problems (Reed et al., 2019). 
However, for systems with complex reliability structures and large numbers of components and component 
types, exact computation is not always feasible due to the curse of dimensionality. For this reason, there is 
growing interest in the use of Monte Carlo simulation approaches to estimate the survival signature of systems. 
This involves sampling random component failure combinations, determining whether they result in system 
functioning or failure, and then using these results to derive statistical estimates for the signature values. 
However, obtaining accurate estimates in this way can also be computationally expensive due to the large 
number of samples required. A number of improvements to survival signature estimation through simulation 
have recently appeared in the literature, including the application of percolation theory to reduce the size of the 
signature requiring computation in network reliability problems (Behrensdorf et al., 2021), an entropy-driven 
method that guides the simulation towards the areas of the signature with greatest uncertainty (Di Maio et al., 
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2023), and a method that transforms the signature computation for two-terminal networks with two types of 
components into a bi-objective optimisation problem (Lopes da Silva and Sullivan, 2023). The main contribution 
in this paper is a new simulation method for estimating survival signatures of general coherent systems with any 
number of component types based on a depth-first search (DFS) of the survival signature. The key idea is to 
increase the efficiency of the simulation procedure by deducing whether the system functions or fails when a 
given subset of the system components function, corresponding to a particular index of the survival signature, 
based on already computed system states corresponding to neighbouring indices. 

The remainder of this paper is structured as follows: Section 2 presents the theory on the survival signature, 
Section 3 gives an overview of existing simulation methods for estimating the survival signature from the 
literature, Section 4 introduces the new simulation method based on a DFS of the signature indices, Section 5 
describes an example network reliability problem used to test the new method, Section 6 presents results and 
analysis comparing the relative accuracy the new method to existing methods when applied to the example 
reliability problem, and Section 7 gives some final conclusions. 

2. Survival signature 

Let  represent a Boolean state vector for a system of m components with 
exchangeable failure times, where  if component  functions and  if it is failed. Also let 

 represent the system reliability structure function, defined for all  possible , where  
 if the system functions with component states  and  if it is failed. In this paper, only 

coherent systems will be considered, defined mathematically as systems where  is not decreasing in any of 
the components of , meaning that a component failure cannot cause an otherwise failed system to function. Let 

 denote the set of component state vectors with exactly l of the m components functioning (i.e. ). 
The survival signature is then defined as the vector  where the value at index , denoted , 
gives the probability that the system functions given that precisely l components function: 

(1) 

Now consider the case where the m components in the system are partitioned into   different types, where the 
 components of type  have exchangeable random failure times. Let  denote the set of 

component state vectors that contain precisely    functioning components of type k (i.e. those 
for which  for  where  is the ith component of type k). Following the notation 
from Behrensdorf et al. (2021),  will be used as shorthand for  in the remainder of this paper. Also let 

 denote the cardinality of  and  denote the number of state vectors from  

for which the system functions. The generalised survival signature, , is then defined as the multidimensional 
array with K dimensions where the value at index , denoted  , gives the probability that the system functions 
if precisely  components of types  respectively function: 

(2) 

In total, the survival signature for a system has  unique indices:  

(3) 

The survival signature for a coherent system is a non-decreasing function in each dimension of its index, since 
the probability of the system functioning may increase, but can never decrease, as the number of components of 
each type that function increases: 
 

, 
 

where  and  are any two indices of the surivival signature. Ignoring the degenerate cases of systems that are 
always functioning or always failed, it follows that:  
 

, 
, 

 



   

where  is the index representing the case that all components function and  representing the case that all 
components fail. 

3. Existing simulation methods for estimating survival signature 

In this section, the general procedure for estimating survival signatures of a system is described and a review of 
enhanced methods from the literature is presented. The simplest simulation method, referred to herein as the 

method, is to approximate the survival signature value at each index  by repeating simulation trials, where 
each trial consists of sampling a random component state vector , and then evaluating whether this results in 
a system functioning or system failed state. Typically, a random component state vector  is generated by 
sampling a random permutation for the components among each type  and then setting the first  
components of each type in the permutation to functioning and the remaining components to failed. The survival 
signature value at index , denoted ,  is then estimated as the proportion of the  trials evaluated at that index 
that resulted in the system functioning: 
 

(4) 

 

where  and  are the number of trials at index  that resulted in the system functioning and failing, 
respectively.   
The equivalence between the estimated signature from (4) and the true signature from (2) can be clearly seen, 
with the former approximating the full set of component state vectors in  by random draws from  with 
replacement. Equation (4) is the maximum likelihood estimator and will converge toward the true value as the 
number of simulation trials is increased. The main computational expense is from evaluating the system state for 
a given component state vector through the system reliability model. Typically, a fixed number of simulation 
trials are performed at each index or until some stopping point is reached, such as when the coefficient of 
variation, given by the equation below, falls to a predetermined threshold value (Behrensdorf et al., 2021): 

(5) 

The number of indices in the survival signature is  and can therefore be very large, particularly for 
systems with many components and component types. The total number of random component state vectors that 

method to converge to an 
accurate survival signature estimate can therefore be huge. Recent research has therefore focused on improving 

method, either by exploiting knowledge of the system 
reliability problem or optimising the sampling scheme. 

Behrensdorf et al. (2021) presented a method for estimating the survival signatures of large networks with 
unreliable nodes using percolation theory. According to percolation theory, when the proportion of failed nodes 
reaches a critical threshold  that depends only on the network structure, specifically the first and second 
moments of its degree distribution, there is only negligible probability that the network functions. Therefore, the 
value of the survival signature at any index   where   is less than  can be set to 0 without 
further analysis and only the remaining indices need to be estimated through simulation. The computational 

method for networks with a low critical 
threshold. However, the method is not applicable to systems other than networks and nor does it offer improved 
efficiency in evaluating the remaining indices. Di Maio et al. (2023) developed an entropy-driven method based 
on a Bayesian framework and information theory to more efficiently utilise a limited computational budget when 
obtaining an estimated survival signature through simulation. This method, which is applicable to general 
systems, follows the n method except that before each simulation trial, the value of the survival signature at 
each index  is assumed to be described by a prior Beta Distribution with parameters  and , and the index to 
evaluate next is then chosen such that the expected information gain is maximised. The expected information 
gain from performing the next trial at a certain index is determined as the weighted sum of the information gains 
if the trial were to result in system functioning or failure, where the weights are given by the prior estimates of 
the survival signature at that index. The posterior distribution at the evaluated index is then calculated by 
incrementing  or ,  depending on whether the system functioned or failed in the simulation trial respectively, 
and the process continues. They combined this with the percolation theory method from Behrensdorf et al. 



   

(2021) to reduce the number of indices that require simulation when analysing network problems. The method 
therefore improves the overall efficiency of finding the signature by prioritising evaluation at regions of the 
signature where gains are expected to be greatest. The methods from Behrensdorf et al. (2021) and Di Maio et al. 
(2023) th method in excluding indices from evaluation where the network will 
almost certainly be failed and guiding the order in which indices are simulated. However, each update at an 
index requires sampling a random component state vector and then evaluating the system state that results. These 
are typically computationally expensive operations, particularly the evaluation of the system state. Note that for 
coherent systems, the estimated survival signature from  
Behrensdorf et al.  (2021) and Di Maio et al. (2023), is also not guaranteed to be a non-decreasing function in 
each dimension of its index. This is because the value of the survival signature is approximated independently at 
each index  as the proportion of the randomly sampled (with replacement) state vectors from  that resulted in 
the system functioning. Therefore, if the value at index a is underestimated or the value at index b is 
overestimated, then it is possible for  even if , where  and  are two indices 
of the survival signature. Certain types of analysis, such as the importance measure analysis approach by Rusnak 
et. al. (2024), assume a non-decreasing signature function making the use of estimates derived from such 
methods potentially unsuitable.   

Lopes da Silva and Sullivan (2023) showed how simulation and bi-objective optimisation could be combined 
to efficiently estimate the survival signature of two-terminal networks with unreliable nodes of two types. In 
each simulation trial, method, a permutation of the order for component failures is first randomly 
sampled for each component type. Two sets of capacities are then assigned to the nodes in the network, one for 
each of the component types. For each component type, the capacity of a node is set to its order among the 
failure time of components of that node type if it is of the same type, or to infinity if the node is of the other type. 
By then solving the bi-objective maximum capacity path problem between the terminal nodes, using a modified 
bi-objective Dijkstra algorithm -noda and Colebrook, 2019) based on the node capacities for the two 
component types, the non-dominated set of solutions is found, where each solution comprises the maximal flows 
along a path between the terminal nodes for the two sets of node capacity assignments for the network. Since 
these solutions correspond to the minimum number of components of each type that fail in the simulated 
permutations before the system fails, the system state at every index of the survival signature can be determined 
in each simulation trial. The method also ensures that the estimated survival signature is a non-decreasing 
function, however it can only be applied to two-terminal networks with two types of component which limits its 
applications. 

4. Depth-first search simulation method for estimating survival signature 

A new method for estimating the survival signature of a coherent system through simulation is introduced in this 
section that is applicable to general systems (including, but not limited to, networks) with any number of 
component types, eliminates redundant computations of the system state to increase computational efficiency, 
and results in a non-decreasing survival signature estimate. As with all simulation methods, it requires a system 
reliability model from which the system functioning or failed state can be determined for a given combination of 
component functioning or failed states. Specifically, the functions shown in Table 1 are assumed to be available. 

Table 1. Required functions of the system reliability model. 

Function name Arguments Description 

get_num_types None Returns the number of component types in the system, i.e. . 

get_num_components k Returns the number of components of type  in the system, i.e. . 

get_components k Returns the components of type  in the system. 

set_component_failed i Sets component  to the failed state. 

set_component_functioning i Sets component  to the functioning state. 

get_state None Returns true if the system is in a functioning state given the current state of the system 
components, otherwise returns false. 

 
In general, calling the get_state() function from Table 1 on a reliability model is computationally expensive. 
Therefore, the aim is to approximate the survival signature for the system as accurately as possible within a 
given budget that defines the number of times this function can be called. The simulation algorithm only 
interacts with the system reliability model through these functions, without requiring further knowledge of its 
composition or implementation - . It can therefore be applied to any type of 
system reliability model such as networks, fault trees, or Markov models, and is able to analyse systems 



   

containing any number of component types. For the purposes of the new method, the survival signature is 
viewed conceptually as a directed acyclic graph, where each node: 

 Represents and is labelled with a unique index  from the signature.  
 Has at most  parent nodes representing signature indices with exactly one more  

functioning component. Each parent is connected by an incoming edge with a different label  
 matching the type of the additional surviving component and represents index 

 of the signature. The shorthand  will be used in the remainder of this 
paper to refer to the index  relative to index . 

 Has at most  child nodes representing signature indices with exactly one more failed component.  
Each child is connected by an outgoing edge with a different label  matching the  
type of that additional failed component and represents index  of the 
signature. The shorthand  will be used in the remainder of this paper to refer to the index 

 relative to index . 
The graph has a single source node (i.e. node without parent nodes) with  child nodes representing index 

 of the signature (i.e. all components in the system function), and a single terminal node (i.e. node 
without child nodes) with  parent nodes, representing index (0,  ,0) of the signature (i.e. all components in the 
system are failed). An example of part of the directed acyclic graph representation of a survival signature is 
shown in Fig. 1. 
 

Fig. 1. An example of part of a directed acyclic graph of a survival signature  
showing the node representing index (2,0,3) and its parent and child nodes. 

Consider the case where a permutation for the components of each type in the system is generated and the 
system state is evaluated at each index under the assumption that the first  components in the permutation for 
type k function and the remaining components fail. For a coherent system, it follows that if a node in the directed 
acyclic graph representation of the survival signature corresponds to a system failed state, its child nodes will 
also correspond to system failed states. For example, indices (1,0,3) and (2,0,2) from Fig. 1 must represent 
system failed states if index (2,0,3) represents a system failed state. This is because the child node connected by 
an edge labelled k is evaluated with a component state vector containing the same set of failed components as its 
parent, but with an additional failed component of type k. Similarly, if a node corresponds to a system working 
state, each of its parent nodes will also correspond to system working state since it is evaluated with a 
component state vector containing the same set of surviving components except for an additional surviving 
component of type k that matches the label of the edge between them.  For example, if at least one of indices 
(1,0,3) and (2,0,2) from Fig. 1 represent a system functioning state, then index (2,0,3) must also represent a 
system functioning state. A key idea of the DFS-based simulation method is to exploit this relationship between 
the system states of connected nodes in the directed acyclic graph to eliminate redundant computations of the 
system functioning or failed state at each index.    

An overview of the main steps in the algorithm for the new method is given by the flowchart in Fig. 2. In each 
iteration of the algorithm, provided sufficient budget for system reliability model evaluations remains, a DFS of 
the survival signature graph is performed to update the system functioning and failed counts from (4) at every 
index based on a new random permutation of the components of each type. Once the budget is expended, the 
survival signature is estimated from (4). A DFS starts at the source node, representing index , and 
explores as far along each branch toward the terminal node, representing index (0,  ,0), as possible before 
backtracking. When each node is visited, the system state corresponding to the component state vector with the 
first  components in the permutation for each component type k functioning, and the remaining components 



   

failed, is determined. The number of failed components is therefore incremented by one of type k compared to 
the component state vector evaluated at its parent node. First, an attempt is made to determine this by checking 
the system state represented by the parent node and, if necessary, checking the system state represented by any 
child nodes that have already been visited. Only if the system state cannot be determined from the connected 
nodes, is it determined by evaluating the system reliability model with the component state vector. Due to the 
incremental increase in component failures during the DFS, the computational expense of the system state 
evaluation may also be reduced for many system reliability models. A record is kept of already visited nodes to 
ensure each node in the graph of indices is visited exactly once in each iteration of the simulation.  

 

Fig. 2. Flowchart describing the main steps in the DFS Survival Signature Simulation Algorithm. 

Fig. 3. Pseudo-code for the function get_dfs_signature_estimate. Calls function simulate_dfs given in Fig. 4.

Fig. 4. Pseudo-code for the function simulate_dfs. Calls function dfs_from_l given in Fig. 5. 

The pseudo-code for the function named get_dfs_signature_estimate that performs the initialisation, initiates 
the simulation, and calculates the survival signature estimate for a system, is given in Fig. 3. The inputs to this 
function are the parameter system, which represents the system reliability model with the functions described in 



   

Table 1, and the parameter budget, which is an integer value representing the number of calls that can be made to 
the function get_state on the system reliability model during computation of the estimate. Note that it is assumed 
that the system reliability model is initially in the state where all components are functioning. The 
get_dfs_signature_estimate function performs repeated DFS of the survival signature by calling the function 
simulate_dfs, for which the pseudo-code is given in Fig. 4. To initiate a DFS, simulate_dfs calls the function 
dfs_from_l, for which the pseudo-code is given in Fig. 5, to begin the DFS from the source node, representing all 
components functioning, which then calls itself recursively to visit each non-visited child node to extend the 
DFS along each branch.  
 

Fig. 5. Pseudo-code for the function dfs_from_l.



   

5. Example Network Reliability Problem 

To analyse the performance of the DFS-based simulation method, and compare it to the existing alternatives, a 
network reliability problem was used. This problem was originally adapted from a model of the electricity 
transmission network of Great Britain by Behrensdorf et al. (Behrensdorf et al., 2021) and has previously been 
used to analyse the survival signature estimation methods by Behrensdorf et al. (Behrensdorf et al., 2021) and Di 
Maio et. al. (Di Maio et al., 2023). The network consists of 29 nodes, each representing an unreliable component 
in the system, that are split into two component types, connected by perfectly reliable edges, as shown in Fig. 6.  
 

Fig. 6. Topology of a network based on the electricity transmission network of Great Britain with 29 nodes representing unreliable 
components, where the nodes labelled 8, 9, 13, 14, and 24 are components of type 1 and the remainder are components of type 2. 

It is assumed that the efficiency of network G, comprising n nodes, is defined by:   

(6) 

where and  is the length of the shortest path between nodes  and  through only functioning nodes. 
 
The network is deemed to be failed if its relative efficiency falls to below 50% of its nominal efficiency: 

(7) 

where  is the network under component state vector  and  is the network when all nodes function. 
The survival signature for this system has 150 indices and the exact signature value for each has been 

calculated using the brute-force and computationally expensive approach of evaluating the system state for every 
possible component state vector.  

6. Results for example network reliability problem 

The new DFS-based simulation method introduced in this paper, the  algorithm, the 
percolation-based from Behrensdorf et al. (Behrensdorf et al., 2021) and entropy-based simulation algorithms 
with percolation from Di Maio et. al. (Di Maio et al., 2023) were each applied to estimating the survival 
signature for the network reliability problem described in Section 5. It was not possible to apply the bi-objective 
optimisation simulation algorithm from Lopes da Silva and Sullivan (Lopes da Silva and Sullivan, 2023) to this 
problem, since it is only applicable to two terminal network problems with two types of components. Each 
algorithm was given a budget of 200000 system state evaluations, except for the entropy-based algorithm which 
was given a budget of 205000 including evaluations used during initialisation, to estimate the signature. The 
entropy-based algorithm requires initial simulation of each index to calculate its initial entropy value. For this 
purpose, each index was simulated 100 t  requiring a total of 15000 system state 
evaluations across all 150 indices, as performed previously by Di Maio et. al. (Di Maio et al., 2023) when 
analysing this network problem. Since simulation is a random process, the simulations were repeated 10 times 
for each algorithm. The mean square errors in the estimated survival signature values compared to the true 



   

values, across all 150 indices, were calculated after every 10000 system state evaluations. The mean values for 
the mean square errors from each algorithm across the 10 simulation repetitions are plotted against the number of 
system state evaluations in Fig. 7. This shows that the DFS-based algorithm introduced in this paper performs 
well on this problem, resulting in a significantly smaller mean square error than the alternative algorithms across 
the full range of system state evaluations.    
 

Fig. 7. Plot of the mean squared error error in estimated survival signature values across all indices against the number of evaluations  
of the system state for different simulation algorithms applied to the network problem described in Section 5.  

Mean values estimated from 10 simulation repetitions. Note the use of a logarithmic scale on the y-axis. 

In Table 2, the mean absolute error and mean absolute percentage error in the survival signature estimates from 
each method after 200000 evaluations of the system state (205000 evaluations for the entropy-based method) are 
given. Both the mean values and bounds for the 95% confidence interval from the 10 simulation repetitions for 
each algorithm are reported. The mean absolute error for the DFS-based simulation method was 0.0004 
compared to 0.0007 for the next best method (entropy-based) and the mean absolute percentage error was 4.49% 
compared to 7.17% for the next best method (percolation). These results suggest that the DFS-based simulation 
method has better convergence to the true survival signature for the network reliability problem from Section 5.  

Table 2. Comparison of mean absolute and percentage error in estimated survival signature values across all indices  
after 200000 evaluations of the system state (205000 evaluations for the entropy-based method)  
between different simulation algorithms applied to the network problem described in Section 5.  

Mean values and 95% confidence interval (CI) bounds for the true means were calculated from 10 simulation repetitions. 

Simulation Method Mean Absolute Error (95% CI Bounds) Mean Absolute Percentage Error (95% CI Bounds) 

 0.0012 (0.0010, 0.0013) 7.43% (5.84%, 9.01%) 

Percolation 0.0009 (0.0080, 0.0011) 7.17% (5.70%, 8.64%) 

Entropy-based 0.0007 (0.0006, 0.0007) 7.45% (7.12%, 7.79%) 

DFS- based 0.0004 (0.0004, 0.0005) 4.49% (3.86%, 5.12%) 

 
Analysis of the DFS-based method showed that 87% of the system state evaluations used to compute the 
signature estimates for the example problem were deduced from the state at neighbouring indices, through the 
process described in Section 4, representing a significant improvement in computational efficiency compared to 

method.  

7. Summary and conclusions 

A new simulation method for estimating the survival signature of a coherent system based on a DFS of the 
indices has been presented. The method exploits the fact that the signature is a non-decreasing function in each 
dimension of its index to, where possible, deduce the system state at an index based on known system states at 



   

neighbouring indices. It also has the advantage that many system evaluations are incremental, by advancing 
component failures one at a time, reducing the average computational expense of evaluating the system state for 
many reliability problems. Results from comparing the mean error in the estimated survival signature with 
existing simulation methods on a benchmark network reliability problem, presented in Table 2, showed it was 
able to achieve significantly improved accuracy for a given computational budget of system evaluations. The 
new method also has the advantage of guaranteeing that the survival signature estimate will be non-decreasing 
function in each dimension of its index. Since the new method is generally applicable all types of coherent 
system reliability problems where survival signatures are of interest, including those with more than two types of 
components, an area for further research is to benchmark its accuracy across a wider set of problem types. It is 
expected that the increase in efficiency, compared to the alternative simulation methods, will increase with 
increasing numbers of component types since the number of neighbouring indices to each index will increase. 
For network-based reliability problems, the DFS-based method could also be combined with percolation theory 
by truncated the DFS along any branch when an index representing the critical fraction of component failures is 
reached. 
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