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Abstract 

This paper presents a network modeling approach which covers a diverse set of different critical infrastructures and their 
mutual interdependencies. It aims at the understanding and quantification of the effects of severe disasters, e.g., large-scale, 
long-lasting power outages, in order to quantify the resilience of both the full grid as well as individual infrastructures. To 
this end, damage cascades based on various interdependencies are simulated, i.e., the temporal evolution of the system 
breakdown is evaluated. As an application, data from OpenStreetMap is used to construct an exemplary grid for the medium-
sized city of Freiburg, Germany for which the effects of a severe power outage are simulated.  
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1. Introduction 

The functioning of modern societies depends on an elaborate net of many critical infrastructures (CIs). To 
name just a few, hospitals treat injuries, grocery stores provide the possibility to buy food and other necessary 
items, the water grid gives access to fresh water and fuel stations enable private transportation. This relevance 
demands a comprehensive understanding of the resilience of CIs, in order to identify and quantify risks, which 
might lead to severe disturbances of their operation. Applying the concept of resilience to CIs became a highly 
active field of research in recent years. Systematic resilience management processes were dev
al., 2017) which aim at a holistic understanding of the vulnerabilities of the system under consideration. The 
application of such a process can be found, e.g., for the gas (Ganter et al., 2024) and telecommunication grid 

, , 2023). Key Performance Indicators (KPIs) are 
typically used to quantify the system performance before, during and after different types of disturbance harming 

social and economic domain (Bruneau et al., 
resilience (Thoma et al., 2016), can be used to check if a set of selected KPIs is truly encompassing or if some 
aspect is underrepresented.  

Considering CIs, it needs to be noted that most of them depend on each other in different ways. Most notably, 
there is a heavy dependence on the proper operation of the power grid, which represents one of the most critical 
technical facilities of modern societies. Due to the rise of electric mobility and electric heating, it can be 
expected that the importance of the power grid will only increase in the future. In consequence, it is necessary to 
get an understanding of the effects of a failure of the power supply on the diverse, interconnected networks of 
CIs. But real-world data of power outages and other disturbances of CIs is, unfortunately, sparse and 
experiments, where a CI (or a replica) is intentionally harmed, are highly complicated to perform. This means 
that modeling approaches often represent the only viable way to gain high-resolution estimates of the system 
KPIs for encompassing sets of starting conditions and disturbances. In recent years, several modeling 
frameworks were developed based on different approaches (Ouyang, 2014), e.g., graph-based (Buldyrev et al., 
2010), flow-based (Rosato et al., 2008), agent-based as well as combinations thereof (Tootaghaj et al., 2017). 
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Still, to the knowledge of the authors, most approaches are targeted to specific CIs and the dynamic aspects, i.e., 
damage cascades, are most often not considered. This severely limits the possibilities to model and analyze the 
mutual interdependencies of CIs and the temporal evolution of disturbances, highly important aspects when 
quantifying the resilience of the individual infrastructure.  

The graph-based modeling approach presented in this paper targets this gap. It has the goal to understand and 
quantify failure cascades and restoration periods of interdependent CIs after a power outage. Therefore, the 
different infrastructures, e.g. power, water, medical emergency treatment, that are identified as critical are 
represented as nodes and dependencies are depicted as connecting edges. Sections 2 and 3 show how the 
numerous interdependencies of a diverse set of CIs are abstracted to a set of network edges and how it is 
evaluated if a specific node provides the necessary service to another node or not. Damage cascades (as well as 
repair processes) are estimated based on both life- and repair times. Although the developed model has a clear 
focus on the understanding of the effects of power outages, it is generic enough to also study other threats by 
extending the model straightforwardly. Data from OpenStreetMap is used to construct an exemplary grid for the 
medium-sized city of Freiburg, Germany. Here, the local population and local enterprises are depicted as well, in 
order to be able to assess the direct impact of power outages on both groups. To show exemplary modeling 
results, a complete blackout of the full power grid is simulated and the resulting predictions for the damage 
cascade are presented in Section 4. 

2. Modeled critical infrastructures 

As the first step of the generation of the network model, it is necessary to define which facilities and services 
should be depicted. The answer to the question of whether an entity is part of the critical infrastructure (CI) is 
often debatable and depends on sion defines a 
CI is essential for the maintenance of vital societal functions  wher may 
have a significant negative impact for the security of the EU and the well-being of its citizens
Commission, 2023). Based on this definition, the European Commission lists the following CI sectors (European 
Commission, 2005): 

 Energy: oil and gas production, refining, treatment, storage, transmission and distribution, electricity 
generation, transmission and distribution; 

 Transport: road transport, rail transport, air traffic, inland waterways transport, ocean and short-sea 
shipping; 

 Information/communication technologies: information systems and network protection, instrumentation 
automation and control systems, internet, fixed and mobile communication, radio communication and 
navigation, satellite communication and broadcasting; 

 Water: provision of drinking water, control of water quality, stemming and control of water quantity; 
 Food: provision of food and safeguarding food safety and security; 
 Health: medical and hospital care, medical serums, vaccines and pharmaceuticals, bio-laboratories and 

bio-agents; 
 Financial: payment service/payment structures (private), government financial assignment; 
 Public and legal order and safety: maintaining public and legal order, safety, and security, administration 

of justice and detention; 
 Civil administration: government functions, armed forces, civil administration services, emergency 

services, postal and courier services; 
 Chemical and nuclear industry: production/storage/processing of chemical and nuclear substances, 

pipelines of dangerous goods, i.e., chemical substances; 
 Space and research. 

Based on these categories the facilities and services shown in Table 1 were selected. However, before having 
a closer look at this selection in Subsection 2.2, the next subsection discusses the main characteristics assigned to 
each CI depicted in the network model. 

2.1. Lifetimes and repair times 

The network model presented in this paper aims to understand damage cascades caused by any loss of the 
supply of electrical power. In principle, all facilities/services which can be labelled as CI should either be able to 
operate for a significant time without power (such as policemen who can continue to work even without power at 
the police station) or they should be equipped with emergency power capabilities (such as hospitals that are 
required to have emergency power generators). But this does not indicate that a CI can operate infinitely long 



   

without external power supply. Instead, it can be expected that the critical facility/service will successively lose 
its different functions up to a point where it becomes dysfunctional. To model this complicated and highly 
individual behavior in a simplified way   to every CI node 
, which quantifies the durability of the node when losing the external power supply. The gradual breakdown of 

its functionality is simplified to a binary state where the node is either operative or dysfunctional. 
Once the breakdown of a CI component has occurred, it cannot be expected that it will start to work again 

immediately once the power supply is restored. The staff needs to return to their workplaces, stocks need to be 
refilled and equipment such as computers need to be repaired or restarted. In consequence, the network model 

 to every CI node . This time needs to pass after the power supply 
(and possibly other necessary services from other CIs) of a dysfunctional CI node is restored before it becomes 
operative again.  

The combination of  and  enables the model presented below to capture all relevant processes which 
follow on an outage. Starting with the intact network, first facilities fail directly after the outage, followed by 
facilities with  until the power outage is over and repair processes start, leading to the successive 
restoration of the dysfunctional critical services. Still, to yield realistic results,  as well as  need to be set 
cautiously by acknowledging inherent uncertainties. Given that Europe only rarely experiences large-scale, long-
lasting disturbances of the power supply, there are no (or only limited) practical experiences considering the 
performance of the CIs when cut from power supply. In addition, every disturbance is different in terms of 
disturbance cause (storm, earthquake, human attack) and side effects (e.g., earthquakes also damage hospitals 
while storms might be unproblematic), which complicates a general estimation of  and even further. To 
tackle these challenges regarding the generalizability of the specification of model parameters, this paper makes 
three assumptions: 

 It is reasonable to define fundamental  and values for any critical facility/service. These time 
values describe the resistance and repair capabilities of the facilities in case services, on which the 
facilities depend, are not provided but the facilities themselves are not directly harmed. It is assumed that 
the values are independent of the specific reason for the supply loss. This indicates that, e.g., a hospital 
will react in the same way to a loss of power due to storm damages as it will react to a loss of power 
caused by a human attack on power transmission lines; 

 In case that  and/or  of a given CI node deviates from these fundamental times, this deviation is 
only caused directly by an adverse event damaging the system. This means that, e.g., an earthquake might 
damage both, the power grid as well as hospital , i.e., it might set  for them, but the failure of the 
power grid does not alter  of another hospital , which is connected to the power grid but unaffected 
by the earthquake; 

 To account for the inherent uncertainty of  and , both can be defined in terms of stochastic 
distributions. Individual values are drawn when setting up a grid for simulation, see Subsection 2.3. In 
this paper, Gaussian distributions are used at this point, see Table 1 to find means and standard deviations 
of different CIs.  

 
Using stochastic distributions to account for the inherent uncertainties of  and  allows to estimate the 

influence of this lack of knowledge on the system performance by resimulating the same adverse event, using 
different realizations of the network under study, i.e., different sets of  and . 

Now, after defining the critical sectors of interest and after clarifying the two times which characterize the 
different critical assets, the next subsection specifies the selection of CIs depicted in the network model, as well 
as the motivation for the individual choices of the different   and  distributions. 

2.2. Selected critical infrastructure 

The specification of the different  can be understood as the quantification of the infrastructure vulnerability 
 al., 2017; Pescaroli and Alexander, 2016) against long-lasting undersupply. In this paper, a 

technology assessment ordered by the German parliament was consulted since it provides a unified perspective 
by discussing the expected effects of a large-scale and long-lasting power outage on various CIs (Petermann et 
al., 2011). Since such a long-lasting outage never happened in Germany, the described decay processes need to 
be understood as educated guesses. Nevertheless, they allow to estimate realistic timescales of failure cascades 
following the loss of power supply. The estimation of the various  values is even more complicated since the 
repair processes need to be considered under the assumption that a severe power outage took place, triggering 
multiple different (interdependent) damage cascades, which directly impact the viability of system restoration. In 
this paper the various values were assumed to be of the same order as the . Since it cannot be expected 
that two infrastructures of the same type, say hospital  and hospital , have exactly the same life- and repair 



   

times and to account for the inherent uncertainty of both times, the individual  and  were drawn from 
Gaussian distributions when setting up one realization of the network model (as described in Subsection 2.1). 

Table 1. CIs depicted in the network model, their respective sector and specifications of model parameters.  

ID Infrastructure  sector  Dependencies  [h]  [h] 

1 EHV productions Energy 5 none 0 0 0 

2 EHV import/export Energy 1 none 0 0 0 

3 EHV grid Energy 1 1, 2 0 0 2 

4 HV productions Energy 3 none 0 0 0 

5 HV grids Energy 1 3, 4 0 0 1 

6 MV grids Energy  6 5 0 0 1 

7 MV district distributions Energy 42 6 0 0 1 

8 LV grids Energy 286 7 0 0 1 

9 Metro/Tram network Transport 1 5, 10 0  1 

10 Traffic management system Transport 1 7 0 0 1 

11 Harbors Transport - 5 0  1 

12 Power grid, train Transport 1 5 0 0 1 

13 Power grid, rail network Transport 1 5   1 

14 Fuel stations Transport 35 8 0 0 1 

16 Mobile communication Communication 1 8 0 0 # LV nodes/2 

17 Radio/Press Communication 1 5   1 

18 Water distributions Water 4 7   1 

19 Food stores Food 80 8   1 

21 Hospitals Health 8 8, 18   2 

22 Ambulance services Health 8 21, 16   2 

23  Resident doctors Health 118 8, 21   2 

24  Nursing homes Health 6 8, 21   1 

25  ATMs Financial 33 8 0 0 1 

26 Bank branches Financial 50 8   1 

27 Fire brigades Public order/safety 15 16, 18, 22   6 3 

28 Police stations Public order/safety 18 16, 22, 27   3 

29 Prisons Public order/safety 1 7, 28   1 

 
In addition to the two times, it needs to be defined which interdependencies between the CIs should be 

 variable, which 
represents the vulnerability of individual infrastructure components to supply losses and is used in the damage 
propagation logic of the network model (see below). If, for example, node of the network model has two 
connections to other nodes and it also needs both of them for proper operation is set, i.e., there is no 
redundancy at all. If the node would only need one connection, i.e., it would be less likely that it 
becomes dysfunctional in case of (local) damages of the network

Table 1 summarizes the of the different CIs considered in the network model, as well as the parameters 
defining and . The listed infrastructure encompasses the first eight sectors specified in Subsection 2.1. 
Several critical services/facilities are subsumed into a single node, e.g., the metro/tram network. The column 

 lists the number of nodes per CI for the network of Freiburg introduced in Subsection 2.3. Most 

 Bold numbers indicate that the infrastructure can be connected to several members of the 
other infrastructure type. Besides the telecommunication node (described below), due to the fact 
that conditions, like the possible need of hospital  for two power connections or the possible need of ambulance 
service  for two different operative hospitals, are not considered. In other words, the model assumes that a 
single connection to another node type suffices to fulfill the dependency.  

The power grid is separated into four levels, extra high voltage (EHV), high voltage (HV), medium voltage 
(MV), MV district distribution and low voltage (LV) to allow for the specification of power outages which target 
different voltage levels. Please note that not all non-power CIs are attached to the LV level of the power grid, 



   

i.e., many facilities are immune to power outages at the lowest voltage level. A few services, e.g., fire brigades, 
have no direct dependence on the power grid so that outages can only affect them indirectly. The nonexistent 
lifetimes of the infrastructures representing the power grid are based on the fact that, in general, the different 
voltage levels collapse instantaneously once not enough power is provided by the overlaying grid level. The  
of other CIs are typically in the orders of days, like for hospitals, but can also be zero in some cases. Fuel 
stations, for example, depend on the power grid to keep their pumps running and the metro or tram stops moving 
once the electrical power is gone. Mobile communication is modelled by a single node and its failure is, due to 
batteries and other long-lasting emergency power measures, not directly related to the loss of power supply. 
Instead, an overload caused by communication attempts of the local population is expected to be the dominating 
cause of failure once a severe outage occurs (Petermann et al., 2011). It is assumed that the loss of half of the LV 

. The addition of ATMs and bank branches to the 
list of CIs is motivated by the fact that power outages disable all options for electronic payments, i.e., the 
affected population has to rely on cash to make their daily transactions. Therefore, the availability of ATMs and 
bank branches becomes very relevant to restock the cash reserves. While ATMs are instantaneously disabled 
once the power outage happens, banks can still operate (in emergency mode) by recording money withdrawals 
on paper, i.e., the loss of computer systems might harm the service but does not block it completely (Petermann 
et al., 2011). 

In addition to the critical facilities listed in Table 1, the network model also contains nodes representing the 
population and local enterprises which depend on the LV power supply. Table 2 lists the specification of these 
nodes. Other dependencies, like the fact that the population depends on operative hospitals, are neglected. This 
limitation will be addressed in further developments of the model. Still, the node setup in Table 2 allows for the 
determination of   

Table 2. Nodes of the network model representing population and local enterprises. 

ID Consumers  sector  Dependencies  [h]  [h] 

30 Population nodes Consumer 286 8 0 0 1 

31 Local enterprises Consumer 286 8 0 0 1 

 
Having defined all node types entering the network model, the next section discusses the setup of the 

exemplary grid for the City of Freiburg, Germany. 

2.3. Network model for Freiburg, Germany 

To construct the network model for the medium-sized city of Freiburg in Germany with its 230.000 
inhabitants, the various infrastructures in Table 1 were successively added as network nodes. Its 
respective dependencies were represented by network edges. To get realistic estimates for the number of nodes 
in the different categories, information from OpenStreetMap was used by employing Overpass turbo (Raifer, 
2023). Besides getting realistic numbers, this approach has the added benefit that geocoordinates can be 
collected, i.e., it is possible to reproduce the geographic distribution of the different CIs.  Though some parts of 
the network were set by hand. This concerns the EHV and HV layers of the power grid as well as nodes which 
subsume different services, i.e., the tram network, the traffic management system, the power grids for trains and 
railways, the mobile communication and radio/press. Edges, i.e., dependencies, were mostly defined by 
proximity, e.g., individual food stores were linked to the closest node representing a LV grid. 

Based on this approach the network was set up in the following way. First, five EHV production nodes, one 
EHV import/export node and one EHV grid node were placed, followed by three HV production nodes and one 
HV grid node. Then, six MV grid nodes, based on data from OpenStreetMap, were attached to the HV grid node, 
followed by 42 MV district distribution nodes located at the center of the districts of Freiburg. 286 LV grid 
nodes were attached to the MV district distribution nodes. After finishing the representation of the power grid, 
35 fuel station nodes, four water distribution nodes and 80 food store nodes were added. To cover the health 
sector, 8 hospitals with 8 emergency services, 118 resident doctors and six nursing homes were attached. 32 
ATMs and 50 bank branches represent the financial sector. To include public order and safety, 15 fire brigades, 
18 police stations and one prison were added. Finally, the remaining infrastructure from Table 1 was 
attached with the 



   

 
Fig. 1. Exemplary network model for the city of Freiburg, Germany. (a) The black dots represent the nodes of the network, edges have been 
omitted for clarity. The blue polygons represent the districts of Freiburg. (b) Looking closer, this image shows nodes representing the power 
grid in red, water nodes and food stores in green, hospitals, doctors and nursing homes in blue, and fire brigades as well as police stations in 

light blue. Black dots represent the other node types, black lines represent the network edges and blue lines show district borders.  
 
single exception of the harbor (ID 11) due to the simple fact that Freiburg has none. To incorporate population 
and local enterprises (see Table 2), one population node and one node representing the enterprises were attached 
to each LV grid node. Based on data from the city administration, providing numbers for inhabitants and 
enterprises per district (Freiburg City, 2023), every population node got a number assigned, which represents the 
sum of people associated with the respective node. Here, the population of each district was equally distributed 
over all population nodes found in the respective district. Enterprises were treated similarly. As final openly 
available information, the number of hospital beds for all hospitals depicted in the network was collected. This 
information is used to assess the relevance of the different hospital nodes when simulating the effects of a power 
outage.  

In total, the final network model consists of 1299 nodes and 1811 edges; Figure 1 presents a visualization of 
the node distribution. Having constructed the network of CIs, the next section presents how damage cascades are 
estimated to predict the system response to a power outage.  

3. Modeling damage cascades 

To simulate the temporal evolution of a disturbance affecting the network of CIs, an enhanced simulation 
setup was applied. This simulation environment, called CaESAR (Fraunhofer EMI, 2023), is based on an 
iterative algorithm that checks and adapts the states of all nodes (and edges) of the network in each timestep. 
Here, three main ingredients are necessary to perform simulations of damage cascades: 

 The node list specifying the elements of the network under study. The Subsections 2.2 and 2.3 described 
in detail how the node list was constructed for this paper

s a representation of the node list. In general, every 
CaESAR-node can have more attributes to account for other propagation logics than the one used in this 
paper, making the framework highly flexible; 

 The edge list specifying the interdependencies of the network. Again, the Subsections 2.2 and 2.3 

representation of the edge list; 
 The definition of the threat which damages the network. It specifies which nodes or edges of the network 

are targeted by the initial adverse event. The threat can either damage nodes based on their name, sector 
or any other attribute found in the node list. It is also possible to define a geographical region where the 
threat is applied in order to account for localized events like storms. It is possible to specify a certain 
damaging probability for the threat. This allows to simulate probabilistic events where only a subset of 
the selected nodes is affected, such that the strength of the damaging event can be modulated. 

Having defined the node list, the edge list and the threat, the simulation starts by applying the threat to the 
network to determine the initial damage event. Typically, the threat overwrites the  of the affected nodes to 
account for physical damages caused by, e.g., a storm. This initial system state is then propagated over time to 



   

assess the temporal response of the network to the initial damage. In each timestep, the simulation determines if 
the damage is propagated via the edges to dependent nodes following the approach described in the next 
subsection.  

3.1. Damage propagation 

The logic used for damage propagation and repair progress is based on the interdependencies, i.e., the 
network edges, the times  and  and the different  specified in the node list. After the initial damage is 
applied, the simulation starts to iterate over the timesteps by performing the following checks. 

 For every node it is checked how many supplying nodes are still operative. In case this number falls 
below the node-specific , it remains operative as long as . However, from now on it is 
recorded how long the node was not sufficiently supplied; 

 In case it is observed that a node was not sufficiently supplied for the time , the node becomes 
dysfunctional, i.e., the damage propagates deeper into the network. In consequence, the node stops to 
supply nodes which depend on it; 

 Once it is observed that a dysfunctional node is sufficiently supplied again, it becomes operative again, 
i.e., it is repaired as long as  holds. If , the simulation starts to record how long the 
dysfunctional node was sufficiently supplied; 

 In case a node with  was sufficiently supplied for a cumulated time of , the node becomes 
operative again. This means that it restarts to supply nodes which are dependent on it so that the repair of 
the network progresses. 

Figure 2 presents a visualization of the damage propagation concept. By iterating the network in time based 
on the described logic, the simulation produces a trajectory of snapshots of the network state for each timestep. 
This provides a possibility to calculate the performance of the whole system, a quantity which represents a 
natural KPI in resilience studies. 

 

 
 

Fig. 2. Concept of the damage propagation based on the minimal necessary supply ( ).  h  
and   does not become dysfunctional if two of its supplying nodes are dysfunctional (indicated by the color red) since the remaining 

three supplying nodes are still operative and provide sufficient supply (indicated by the number one at the edges).  
(b) If four of the supplying nodes become dysfunctional, the  not met, it immediately becomes dysfunctional (  

and the damage propagates to the next node  which also becomes dysfunctional. 

4. Simulation of the effects of a large-scale, long-lasting power outage 

To demonstrate an exemplary application of the concept outlined in the sections above, the following study 
inspects the model predictions for the worst-case scenario, i.e., the full, long-lasting blackout of the (European) 
EHV power grid. The network model of Freiburg introduced in Section 2 is analyzed. The threat definition (used 
to mimic the blackout) targets all EHV production nodes as well as the EHV import/export node (ID 1 and 2 in 
Table 1). All those nodes become dysfunctional at , triggering the collapse of the full power grid and all 
other nodes without lifetime ( ), like ATMs. It is assumed that the threat damages the targeted nodes for a 
whole week, which is sufficient to observe the successive decay of all different CIs over time. Figure 3 
visualizes the system decay by depicting the percentage of operative nodes for the different infrastructure 
categories over time. Please note that the exact shape of the observed evolution depends on the used sets of  
and . To get an impression of the influence of the uncertainty of both timesets, two different sets where drawn 
from the Gaussian distributions defined in Table 1. The solid lines in Figure 3 represent the first set of times, the 
dashed lines show the results for the second set. It can be seen that the uncertainty of the times leads to 



   

uncertainties regarding the system decay following the outage as well as regarding the evolution of the system 
repair. Please note that the curves for operative hospital beds represent the hospital nodes of the network 
weighted by the number of beds. When comparing the different infrastructures, it can be observed that the fuel 
stations fail at first, due to , followed by the resident doctors, banks, the water grid, food stores and 
police stations and fire brigades. The hospitals survive the longest, some of them become dysfunctional only 
after the power supply is restored again. This failure is due to the fact that hospitals depend on both power and 
water, to stay operative. This means that the restoration of the power supply is not sufficient to either prevent the 
failing or to start the repair of the hospital nodes, the water nodes need to be back as well. This dependency on 
the water nodes is also the reason why the hospitals, together with the fire brigades, are the last infrastructures 
which fully recover, i.e., their repair only starts once the water supply is restored at around  h. 

 

 
Fig. 3. Breakdown of the network of CIs for a full blackout of the EHV grid lasting for one week. (a) and (b) depict different infrastructures, 

the dotted red lines represent start and end of the loss of the EHV power supply.  
Solid and dashed lines distinguish the results for two sets of  and  drawn from the Gaussian distributions defined in Table 1.  

Please note that, having life- and repair times of zero, the curves for the fuel stations do not differ. 
 

The curves in Figure 3 represent typical KPIs to assess resilience as described in the introduction. The longer 
the decline of the performance curve after an adverse event is delayed, or the sharper it rises back to 100 % 
during the repair phase, the more resilient the infrastructure is against the modeled damaging event. It is possible 
to define bounding conditions when calculating KPI curves, e.g., one might assume that some hospital beds are 
redundant so that the KPI for the hospital beds only decays once the number of lost beds exceeds this 
redundancy. The curves can also be used to quantify the influence of mitigation measures, which aim for the 
reduction of the system vulnerability to the studied disturbance. 

As an example, Figure 4 shows the curves resulting from the assumption that all hospital nodes have 
 instead of , i.e., they can either compensate the loss of power or water. This change drastically 

improves the resilience of the complete grid of CIs for both sets of  and . First of all, the hospitals do not 
become dysfunctional because the restoration of the power supply is enough to prevent the failure of the 
hospitals. This has the consequence that the nodes representing ambulance services (depending on working 
hospitals and working communication) and resident doctors are repaired earlier since they do not have to wait for 
the repair of the hospitals. This effect also accelerates the repair of nodes representing the fire brigades, which 
are assumed to depend on working ambulance services for proper operation (see Table 1). This again speeds up 
the repair of the police nodes, which depend on the operating fire brigades. So, the change in the  of 
hospital nodes triggers an improvement of the resilience of several other CIs against the blackout event.  
 



   

 
Fig. 4. Breakdown of the network of CIs for a full blackout of the EHV grid lasting for one week.  

Compared to Figure 3, the model assumes that all hospital nodes have  instead of .  
(a) and (b) depict different infrastructures, the dotted red lines represent start and end of the loss of the EHV power supply. 

Summary 

This paper presents a network modeling approach to assess the resilience of a grid of diverse, interdependent 
CIs. The numerous dependencies between the considered CIs are a priori very different, i.e., the dependency of 
an ATM on a functioning power supply is conceptually very dissimilar from the dependency of ambulance 
services on operative hospitals. Still, it is necessary to combine those dependencies in a single model in order to 
be able to understand vulnerabilities of modern societies depending on the complicated grid of CIs. The 
modeling approach of this paper aims exactly at such a unified description of the dependencies. To test this 
approach, the effects of a large-scale, long-lasting power outage are inspected. Lifetimes are defined to account 
for emergency measures, like emergency power generation, and repair times are assigned to cover delays in 
repair processes following such a severe event. Both times are defined in terms of Gaussian distributions to 
account for individual differences between different infrastructures of the same types, as well as for the inherent 
uncertainties regarding the estimation of those times. 

Further studies need to improve the level of detail of the network, e.g., the mobile communication needs to be 
fleshed out. In addition, the predictions for other scenarios, e.g., cyber-attacks targeting correspondingly 
vulnerable nodes, need to be analysed to detect possible shortcomings of the current modeling framework. 
Additionally, the logic defining the failure cascades need to be revisited. The current implementation, based on 
the minimal needed supply , has the shortcoming that different dependencies are treated interchangeably, 
e.g., for  hospital nodes do not care if the water or the power supply is operative. Currently it is 
planned to replace the single number  by 
connections to the different other infrastructures need to be operative to prevent the failure of node  
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