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Abstract 

Redundant architectures can improve the reliability of complex systems. However, component dependencies can affect the 
architecture and negate the benefit of redundancy. In this paper, we develop three component dependency models and 
analyze the reliability of different -out-of-  configurations using Monte Carlo simulation. The first model assumes a linear 
component dependency. The second and third models consider common cause failures, in the latter for all components and in 
the second for random groups of components. As expected, the results show that interdependency degrades the reliability of 
parallel 1oo systems while improving it for serial oo  systems. Interestingly, 2oo3 systems produce intermediate results 
that show an improvement in reliability for certain indicators and a deterioration for some others, depending on the type of 
dependency models. The results show nonlinear properties of oo  systems with dependent components, which suggest 
careful handling in applications. An online simulation platform based on Monte Carlo Simulation enables product designers 
to use the models efficiently and achieve tailored results. 
 
Keywords: Stochastic dependence, system dependency, risk management, redundant architecture, MooN, dependent components, common 
cause failure, DFA, dependent failure analysis, Monte-Carlo simulation 

1. Introduction 

1.1. Dependency in redundant system architectures 

Redundancy is a common approach to increase the reliability of systems. Consequently, redundant system 
architectures are becoming increasingly necessary in modern products with a growing demand for safety. 
Redundancy can be implemented at the component level (serial-parallel systems) or at the system level (parallel-
serial-systems). The Barlow-Proschan (BP) principle states that redundancy at the component level is generally 
more reliable than redundancy at the system level (Barlow and Proschan, 1981). These redundant configurations 
are discussed extensively in the literature. Safety-critical industries like aerospace, rail transportation, nuclear 
energy and the automotive sector use -out-of-  architectures (also called oo , -out-of- , voting or majority 
redundancy). Their field of application is broad and therefore highly relevant. oo  systems can be used in 
domains where fail-operational functions are required. They enable self-diagnosis of systems by comparing 
redundant inputs according to their logic. A oo  system consisting of  components is operational if at least  
components are working. Therefore, oo  architectures are particularly relevant for the area of autonomous 
driving (Julitz et al., 2023). It is frequently assumed that the system's components are independent, but this 
assumption does not apply in reality. Components of real systems are interdependent, e.g. as they are exposed to 
the same environment or share the same load. The functional safety standard of the automotive industry requires 
the consideration of dependencies caused by shared inputs, communication, interface, shared resources, 
components of identical type, systematic coupling and insufficient environmental immunity (ISO, 2018). 
Preliminary results for multisensory perception in autonomous vehicles have shown that component dependence 
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can degrade the benefits of redundant architectures in terms of reliability, e.g. in situations where common cause 
failures can occur (Gottschalk et al., 2022). In other situations, the reliability can be significantly improved, e.g. 
when different sensors complement each other (Kowol et al., 2021). In general, the impact of component 
dependency of redundant architectures on system reliability is still poorly understood in reliability engineering, 
especially with regard to MooN architectures (Fang and Li, 2016). Product designers must consider the possible 
dependencies between components. Existing dependency models (Section 1.2) are complex and difficult to 
understand. User-oriented tools are required for comprehensible use in product development. 

1.2. Related work: models of dependent failure behavior 

Several models of dependent failure behaviour have been proposed. A literature review has identified that 
they fall into five categories: Lifetime distribution models, system state models and degradation process models 
(statistical association among the variables) as well as failure interaction models and failure propagation models 
(mechanistic dependency models) (Zeng et al., 2023). 

In Lifetime distribution models, distributions are joint to model dependency. (Kelkinnama and Asadi, 2022) 
evaluated the reliability of a system consisting of n components grouped into L different types. Each group has 
its individual distribution, which is linked via a copula function. (Fang and Li, 2017) analysed component 
lifetimes  with matched redundancy component lifetimes  which are distributed differently and linked with a 
copula factor. (Gupta and Kumar, 2014) modelled dependency by distributing components and their spare parts 
differently considering failure rate, likelihood and stochastic ordering. (Jeddi and Doostparast, 2016) used joint 
distributions of component lifetimes to analyse two dependent components of serial and parallel systems. (Kotz 
et al., 2003) investigated the influence of the degree of correlation of dependent components on parallel system 
lifetimes. This is done by comparing bivariate distributions. -
represented dependency through copula and distortion functions which couples a set of functions of individual 
distributions. The components of each distribution function are dependent. The copula is based on the 
dependence structure. (Yan et al., 2022) studied serial-parallel and parallel-serial systems and their relationship 
with a copula coefficient which couples the distribution of original components with the distributions of their 
spare parts. (Zhang et al., 2017) compares distributions of the same and different types with a copula scalar 
factor in a multivariate distribution and confirms the BP-principle. The paper considers hazard rates, likelihoods 
and ratio orderings. 

System state models focus on representing states of components or systems. (Agnieszka and Bozena, 2016) 
modelled a multistate parallel-serial system with dependent components. The states represent characteristic 
reliability functions which are combined in a multistate reliability function. The dependency of spare parts on 
original components is implemented with a stress proportionality correction coefficient. (Li et al., 2022) uses 
state-dependent lifetime distributions. The states are modelled with co-variates derived from environmental 
conditions such as frequency, temperature or weather. (Xing and Levitin, 2013) modelled system states (phases) 
with fault trees to identify common cause failures. (Mi et al., 2018) analysed the reliability of multi-state systems 
with Bayesian Networks, in which the nodes represent systems states. Dependent failures are determined by the 
fraction of the total failure probability attributable to dependent failures. 

Degradation process models refer to processes in which the reliability of a system or component decreases 
over time. Statistical processes like Wiener, gamma or inverse Gaussian can be used for modelling degradation 
processes (Zeng et al., 2023). Also, the combination of random shock processes and degradation processes or 
applications of copula models for degradation processes can be found in the literature (Zeng et al., 2023). 

Failure interaction models explain how different failure mechanisms interact with each other. (Fang and Li, 
2016) focus on the system structure of serial and parallel systems and their structural dependencies which lead to 
failures. A Bayesian network approach by (Cai et al., 2012) evaluates common cause failures that could lead to 
failures in a MooN system using binary tables of component failures. 

Failure propagation models are used to describe a chain of events or processes that lead to a failure, which is 
also called cascading failure and is a subset of common cause failures. (Da Costa Bueno and Martins do Carmo, 
2007) modelled failure propagation of a oo  system with a compensator process. Based on known component 
lifetimes, conditional probabilities of failures are projected. Self-evolution processes, network models and 
simulations are also used to model failure propagation (Zeng et al., 2023). 

A literature review by (Dhillon and Anude, 1994) has compiled modeling techniques for common cause 
failures (CCF). -factor method, the binomial failure rate method, the square root bounding method, system-
specific methods and fault tree-based approaches with cut-set analysis are discussed. Markov models are 
highlighted for stochastic analysis of CCF. Challenges for the practical identification of common cause failures 
include the number of possible causes of CCF that need to be identified, the suitability of modeling techniques 



   

for reliability analysis, available data of CCF events and a consistent definition of CCFs (Dhillon and Anude, 
1994). 

1.3. Research objective 

A variety of approaches have been explored to address the issue of dependent failures. Typically, they are 
restricted to series or parallel systems, or limited to specific probability distributions. This makes it difficult to 
find generic properties, resulting in specific solutions for each model. A comprehensive understanding of how 
component dependencies affect the reliability of the entire system remains elusive. A research gap emerges 
especially when the impact of dependencies in oo  architectures are considered. Most of the preliminary work 
is based on complex and complicated mathematical models. Their efficient application can pose a challenge for 
the product designer. Therefore, an efficient model for studying component dependencies should be developed 
with a focus on user-friendliness. The model is intended to contribute to a better understanding of dependencies 
in redundant architectures, also with regard to oo  systems, and to provide general insights for cross-domain 
applications. To this end, the following questions are examined:  

 How can the dependent failure behaviour of systems be modelled in a minimal way? 
 What generalizations can be made about the impact of dependent redundancy of serial, parallel, and -

out-of-  architectures on system reliability? 
 How can the model be used in a user-friendly way? 

The paper is structured as follows. In Section 2, component dependency models are developed in terms of 
pairwise linear dependency, global common cause failures where all components fail, and marginal common 
cause failures where some components fail. A copula factor  is used. Section 3 presents the results for a serial, 
parallel and a oo  system. Section 4 describes how the results are obtained und how the models can be used. 
For this purpose, a script is written in R (Figure 7), which is integrated into an online simulation platform.  
A conclusion is given in Section 5. 

2. Component dependency models 

In the following, three linear models of component interdependence including a covariate are developed and 
analysed for multivariate systems with  components. The dependent times to failure of the components are 
given by (1). 

(1) 

They are determined on the basis of  independent and identically distributed continuous random 
variables (typically Weibull distributed) given by (2). 

(2) 

The dependency is quantified by a parameter , the component times to failure being independent if 
 and equal if . The time to failure T of a  oo  ( -out-of- ) system, which remains operational 

until at least  components are operational, is the  quantile of the vector  as given by (3). 

(3) 

2.1. Linear dependency model 

First, a linear independence of the component times to failure is assumed, including a covariate , weighted 
by the parameter , see (4). 

(4) 

The component times to failure , , are independent if  while they are equal to 
 for all  if . Here, except for the later extreme case where , the component times 

to failure, being random continuous, cannot be strictly equal.  

2.2. Global common cause failure model  

In contrast to the previous linear model, the component interdependency is modelled through global common 
cause failure possibilities for which all components can fail simultaneously. This corresponds to cases of damage 



   

affecting the entire system or subsystems. as shown in (5), it is no longer a question of a linear combination of 
variables but of a probability  that all the components fail at the same time . 

(5)  

Where  is an independent Bernoulli random variable equal to zero with probability  and to one with 
probability . Two cases are possible with probability  in this modelling framework: either all the 
component times to failure  are equal to , or they are all independent and equal to . 

2.3. Marginal common cause failure model 

All components can fail simultaneously with the model in (5). Alternatively, it can also be assumed that only 
some of the components fail simultaneously. In this case, the common cause failure probability is specific to 
each component as described by (6). 

(6)  

As before, , , are independent Bernoulli random variables with the parameter . In this model, 
the component times to failure are equal to the covariate  with probability  or are independent and equal to 
the random variables  with probability . 

3. Results 

In the following, a Monte Carlo simulation is used to analyse the distribution of the oo  system time to 
failure  with  components for the three interdependency models given in Equations (4), (5), and (6). The 
analysis is performed for  ranging from zero to one, so that the system is an ordinary oo  system with 
independent components for , while it resumes to a system with a single component for . A 
systematic methodological procedure is followed: First, the probability density function (PDF) of the system 
times to failure and the system reliability is drawn. The mean, median, mode and standard deviation statistics are 
the presented in relation to the performance of an ordinary oo  system with independent components for 
which . This allows quantifying the proportional impact of component interdependency on the reliability 
and time to failure of oo  system. Three systems with  components are considered:  

 The case  corresponds to a 1oo3 parallel system that fails when all the three components are no 
longer operational. 

 The case  corresponds to a 2oo3 system, also referred to in the literature as a 1-ECU fail-
operational architecture. 

 The case  corresponds to a 3oo3 series system that fails when one of the three components fails. 

3.1. Linear dependency model 

It is noteworthy that, since the expected value is a linear operator, the model linearity is preserved on average 
with the linear dependency model (4). In fact, as shown in (7), using this model results in 

(7)  

The remaining statistics, namely median, mode, and standard deviation, are nonlinear operators. Therefore, 
nonlinear effects should occur by varying the dependency parameter  Figure 1 shows the probability density 
function (PDF) and the reliability function while Figure 2 shows the location statistics for the time to failure 
according to the dependency parameter .  

The dependency systematically degrades the reliability and related statistics (mean, median and modal time to 
failure) for parallel system 1oo3 (Figures 1 and 2, left panels), while it systematically improves (up to the modal 
value) for the serial system 3oo3 (Figures 1 and 2, right panels). The 2oo3 system shows mitigated results: 
improvement of the mean time to failure but deterioration of the modal value and nonlinear unimodal 
relationship for the median (Figures 1 and 2, middle panels). As expected, the mean values show a linear 
behaviour, when the mode and median are nonlinear for all the systems (see Figure 2). 

 



   

 
Fig. 1. Probability density function (PDF) of the time to failure (top panels) and reliability function (bottom panels)  

for the -out-of-  systems with the linear dependency model (4) and  ranging from 0 to 1. 

 

 
Fig. 2. Relative mean value, median and mode (from the top to the bottom) of the time to failure of -out-of-  systems  

with the linear model (4) and  ranging from 0 to 1. 

3.2. Global Common Cause Failure Model  

As with the previous linear model, the global common cause failure interdependence model (5) preserves 
linearity over  on average. Indeed, as shown in (8), using this model results in 

(8)  



   

since . As previously, the remaining statistics such as median, modal value and standard deviation, 
which are nonlinear operators, have no obvious linear relationship with . Figure 3 shows the PDF and the 
reliability function of the CCF dependence models, while the time to failure location statistics are shown in 
Figure 4.  
 

 
Fig. 3. Probability density function (PDF) of the time to failure (top panels) and reliability function (bottom panels)  

for the -out-of- systems with the global Common Cause Failure Model (5) and  ranging from 0 to 1. 
 

 
Fig. 4. Probability density function (PDF) of the time to failure (top panels) and reliability function (bottom panels)  

for the M-out-of-N systems with the global Common Cause Failure Model (5) and p ranging from 0 to 1. 
 
As for the linear model (4), the dependency deteriorates the reliability of the 1oo3 parallel system while it 

improves it for the 3oo3 serial system degradation (Figures 3 and 4, right panels). The 2oo3 redundant system 
shows intermediate results (Figures 3 and 4, middle panels). More precisely, a nonlinear transition can be 
observed as p increases, from unimodal distributions with large location and low variability to asymmetric 
distributions with low mode and large right tails for the redundant 1oo3 und 2oo3 systems. Note that the median 
is invariant with for the 2oo3 system. 



   

3.3. Marginal common cause failure model  

In contrast to the previous models, the marginal common cause failure dependency model (6) no longer 
preserves linearity over  on average. In fact, this results in (9),  

(9) 

as  is specific to the component .  
Qualitatively, the marginal CCF model shows similar behaviors to the linear and global CCF models (see 

Figures 5 and 6). In particular, the 2oo3 system still presents mitigated results, with improvements in the modal 
time to failure, deterioration of the mean and no effect on the median (Figure 6, middle panels).  

In contrast to the previous models, the mean time to failure with the marginal CCF shows nonlinear 
relationships with  (Figure 6, top panels). The relationships are concave decreasing, sigmoidal and convex 
increasing for the 1oo3, 2oo3 and 3oo3 systems, respectively. 

 

 
Fig. 5. Probability density function (PDF) of the time to failure (top panels) and reliability function (bottom panels)  

for the -out-of-  systems with the marginal Common Cause Failure Model (6) for  ranging from 0 to 1. 
 

 
Fig. 6.Relative mean value, median and mode (from the top to the bottom) of the time to failure of oo  systems  

with the marginal CCF model (6) and ranging from 0 to 1 



   

4. Simulation Tool 

The results are obtained by Monte Carlo simulation of the times to failure of the different oo  systems. On 
average,  simulations of the time to failure  given by (3) are executed for each of the three component 
interdependency models (4), (5) and (6), each of the 1oo3, 2oo3 and 3oo3 architectures, and each value for  
ranging from zero to one (20 instances). This corresponds to 1,8 billion random variable draws. The PDF and 
reliability function in Figures 1, 3, and 5 are obtained using Gaussian kernel density while the means, medians, 
modes and standard deviations in Figures 2, 4, and 6 are calculated empirically over the simulation samples. The 
computations are performed in R. The code is given in Figure 7. An online simulation platform is provided, 
where the parameters can be varied and the code adjusted to obtain customized results (Julitz and Tordeux, 
2023). 

 

 
 

Fig. 7. R code for the Monte Carlo Simulation of -out-of-  system time to failure (3) with the three component dependency models 
equations (4), (5) and (6). Online Simulation Platform (Julitz and Tordeux, 2023). 

5. Discussion 

The analysis of the results of this study provides insights into the complex interaction between component 
dependencies and the reliability of -out-of-  ( oo ) system architectures. Examination of the three 
interdependency models - linear dependency, global common causes of failure (GCCF) and marginal common 
causes of failure (MCCF) - reveals insightful failure behaviors. The linear dependency shows different effects on 
various MooN architectures. While it systematically degrades the reliability of the 1oo3 system, it shows a 
systematic improvement for the 3oo3 system. The 2oo3 system, on the other hand, shows mixed results, 
indicating the complexity of the effects of dependencies in different redundancy systems. The GCCF model 
emphasizes the importance of asymmetric distributions in certain redundancy architectures. In particular, it 
improves the reliability of the 3oo3 system while degrading that of the 1oo3 system. The 2oo3 system shows an 
intermediate performance. These results point to specific failure mechanisms that should be considered when 
analyzing redundancy systems. The MCCF modeling shows qualitative similarities with the other models. The 
2oo3 system continues to show mixed results, with improvements in the modal time to failure, degradation of the 
mean and no effect on the median. The observed non-linear relationships of mean time to failure with  indicate 
that the effects of dependence do not scale linearly with the dependence parameter . This could indicate that 
critical thresholds exist above which reliability is unexpectedly affected. Looking at the different oo  
architectures underlines the need to consider dependencies specific to the system configuration. Each 
architecture - 1oo3, 2oo3 and 3oo3 - reacts differently to interdependencies, with parallel systems being more 
affected than serial systems. 



   

6. Conclusion 

This work provides a deeper insight into the impact of component dependencies on the reliability of various 
-out-of-  systems. The different responses of the architectures and the non-linear relationships observed 

underline the complexity of the topic. The findings are particularly important for safety-critical applications such 
as advanced driver assistance systems (ADAS) for automated driving. Three research questions (RQ) were 
posed.  

RQ 1: How can the dependent failure behaviour of systems be modelled in a minimal way? Three 
mathematical models were presented that describe the dependent failure behavior of systems with  components 
in a compact form (Eqs. 4, 5, 6). Limitation: Due to the general formulation of the models, application to specific 
systems is difficult to implement. 

RQ 2: What generalizations can be made about the impact of dependent redundancy of serial, parallel, and 
M-out-of-N architectures on system reliability? The Monte Carlo simulation results of the time to failure of the 

oo  systems show generic characteristics of the three component dependency models, namely linear, global 
CCF and marginal CCF models. As expected, the dependency systematically degrades the reliability of the 1oo3 
parallel system while it leads to improvements for the 3oo3 serial system. Interestingly, the 2oo3 system shows 
intermediate results, negative in average but positive for the modal value, when the median remains unaffected 
(CCF models). Limitation: The analysis was restricted to 1oo3, 2oo3 and 3oo3 systems.  

RQ 3: How can the model be used in a user-friendly way? The models were integrated into an application-
oriented online simulation platform based on a Monte Carlo simulation using an R script (Julitz and Tordeux, 
2023). The integrated code allows to set the parameters  and  of the oo  systems, distribution parameters 
and the number of simulations to be set. This allows the analysis of different dependent systems. Limitations: 
The possibility of analysis using the online tool is limited to simple  architectures. If a combination of 

oo  systems is required for a specific application, the code must be adapted accordingly. 
The study focuses on failure density, reliability function and location statistics for the time to failure (mean, 

median and mode). Other indicators should reveal interesting properties such as failure rate or statistics for the 
time to failure distribution such as standard deviation, skewness or kurtosis. Further investigations could be done 
on the modal value, when the median remains unaffected (CCF models. A system with only three components is 
analysed. Further investigations could be carried out with more complex oo  systems, such as 2oo4 or 3oo4 
systems and a combination of them in e.g. serial-parallel and parallel-serial systems to allow more flexibility in 
the customization of the models. For lack of simplicity, the component times to failure are mixtures of random 
variables with identical Weibull distributions with a shape parameter equal to one (i.e., exponential distribution). 
Further research could be carried out using different distributions to account for time-dependent effects. In 
addition, each component could have a specific parameter setting. A dynamic approach based on stochastic 
processes could also better describe time-dependent effects, e.g. for modelling standby systems and other 
complex redundant architectures. 
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