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Abstract 

Reliable fault detection in industrial assets requires predictive models that can generalize with limited labeled data, especially 
as new fault types emerge. Traditional supervised techniques perform poorly in these low-resource settings. We propose a 
human-in-the-loop approach combining Contrastive Sensor Transformer (CST) self-supervised pre-training and active 
learning for data-efficient fault diagnosis.  CST learns representations from unlabeled condition monitoring data using a 
contrastive learning approach. This pre-trained model captures general fault patterns without direct supervision. To introduce 
supervision with minimal labeling, we iteratively query samples for an expert to annotate based on the model's uncertainty.  
The encoder provides the learned embeddings and samples are incrementally labeled through active learning. This focuses 
the expert's labeling effort on the most informative instances to refine the classification boundaries.  We evaluate our 
approach on two bearing fault datasets, namely the  Case Western Reserve University (CWRU) dataset and KAT dataset 
provided by  Paderborn University. Our approach archives  over 90% accuracy on CWRU and 65% on KAT using less than 
1% of labels. Compared to autoencoder and fully supervised baselines, our method  reduces the labeling demands while 
maintaining high performance, especially valuable as new fault types emerge in real-world settings. 
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1. Introduction 

Condition-based maintenance of industrial assets relies on machine learning models trained to detect and 
diagnose faults from sensor data (Fink et al., 2020). However, collecting comprehensive labeled examples of all 
possible fault scenarios under varying machine conditions is challenging and resource-intensive. As a result, 
models typically have access to limited annotated training data collected from targeted fault injection 
experiments and scheduled maintenance periods. This poses challenges for applying data-driven approaches at 
scale, as most machine learning algorithms require large labeled datasets to learn robust representations.  

Traditional supervised learning approaches also struggle to generalize to novel scenarios not present in the 
training data. Recent works have explored self-supervised learning techniques that leverage large unlabeled 
datasets to address these limitations (Bukhsh, 2022; Ding et al., 2022; Golyadkin et al., 2023; Hu et al., 2022; 
Senanayaka et al., 2020; Wang et al., 2020; Zhang et al., 2022). The key idea is to leverage vast unlabeled 
datasets to learn transferable representations of machine health. While self-supervised methods make better use 
of unlabeled data than supervised approaches, they are still constrained by the initial set of labeled examples 
used for fine-tuning. If this initial set does not adequately represent the full data distribution, important fault 
patterns may be missed. Human-guided learning, also known as active learning, aims to iteratively select the 
most informative instances for annotation, maximizing model performance with minimal labeling effort (Settles, 
2009). Previous works have applied active learning to prognostic and health management applications. Some 
notable examples include Jian et al., (2021), who proposed the use of active learning with ensemble classifiers, 
Jin et al., (2021) proposed a residual attention network combined with active learning and (Chen et al., 2019) 
introduced an empirical model singular value decomposition, active learning and random forest for gearbox fault 
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detection. These approaches relay on supervised and semi-supervised learning to address the limited availability 
of labeled data.  

In the paper, we propose a novel method called Human Guided Contrastive Sensor Transformer (HG-CST), 
which combines powerful self-supervised learning, contrastive learning, and transformer architecture with an 
active learning paradigm for robust and data-efficient fault diagnosis.   Our paper offers the following key 
contributions: (1) HG-CST leverages Contrastive Sensor Transformer ( Bukhsh, 2022) to extract representations 
from unlabeled bearing sensor dataset and use learned embeddings as input to active learning loop, (2) Two 
sampling strategies are evaluated - class-agnostic versus class-aware targeting one sample per class, (3) 
Experiments on CWRU and KAT bearing datasets demonstrate HG-CST achieves over 90% accuracy on CWRU 
and 65% on KAT using less than 1% of labels,  and (4) HG-CST outperforms supervised autoencoder baselines 
with limited labeled data. Both class-aware sampling and prioritizing uncertain examples improve active 
learning performance. Similarly, sampling based on uncertainty yields superior results compared to random 
sampling.  Our results validate that combining self-supervised learning, contrastive representations, transformers 
and human guidance maximizes data value for predictive maintenance under real constraints.  

The rest of the paper is structured as follows: Section 2 provides the background on key machine learning 
techniques that are core to our proposed method. Section 3 introduces our method, a human-guided contrastive  
sensor transformer (HG-CST). Section 4 presents the dataset description, experimental setup, and model 
evaluation results. Section 5 provides the concluding remarks.  

2. Background 

This section provides background about key machine learning techniques used in our approach, namely self-
supervised contrastive learning and transformers.  

2.1. Self-supervised contrastive learning  

Machine learning models require large amounts of labeled data to achieve high performance. However, 
collecting comprehensive labels is prohibitively expensive, especially for industrial equipment condition 
monitoring. Self-supervised learning has emerged as a promising approach to leverage the abundant unlabeled 
data readily available from sensors.  Rather than relying entirely on human-provided labels, self-supervised 
learning techniques design pretext tasks on unlabeled data to learn general representations (Saeed et al., 2019). 
Contrastive learning is a widely used self-supervised technique that leverages data transformations to construct 
contrastive examples (Saeed et al., 2021). The key idea  of contrastive learning is to apply different 
transformations (e.g., wrapping, shifting) to the same sample, creating two different views of the same data 
point. These augmented views are deemed as similar, while views from other samples act as contrasts that should 
be dissimilar.  
Triplet contrastive loss is one of the loss function that is used in self-supervised learning frameworks to train 
models in differentiating between similar and dissimilar instances within an embedding space. The learning 
process revolves around the use of triplets, which consist of an anchor sample , a positive sample , and a 
negative sample . The positive sample shares some form of similarity with the anchor, while the negative 
sample does not.  

 

 

The aim of the triplet loss is to learn embeddings such that the distance  between the anchor and the 
positive is less than the distance between the anchor and the negative by a predefined margin. Figure 1 provides 
illustration of learning/updating mechanism contrastive loss function.  

Fig. 1. Contrastive (triplet) loss function with one query (anchor), one positive key and one negative key 
(Figure taken from Schroff et al., 2015). 



By pre-training on such self-supervised tasks, general-purpose features can be learned from unlabeled data 
that transfer well to downstream tasks with limited labeled data.  Contrastive learning has achieved state-of-the-
art results across diverse domains like computer vision, NLP and time series modeling. In this work, we explore 
its potential for representation learning from industrial monitoring data for predictive maintenance applications. 

2.2. Transformer architecture  

Transformers were introduced by Vaswani et al. as a novel architecture for machine translation tasks 
(Vaswani et al., 2017). Unlike previous recurrent networks that process sequences recursively (Hochreiter and 
Schmidhuber, 1997), Transformers rely on self-attention mechanisms. Self-attention allows Transformers to 
directly model relationships between different positions in the input sequence. Through self-attention, each 
position in the input sequence is able to attend to all other positions to draw connections between them. Figure 2 
provides overview of self-attention mechanism. Concretely, for an input sequence of length , self-attention first 
projects the sequence into three vectors - queries ( ), keys ( ) and values ( ) where  is patch 
from a single sequence.  The model then computes the dot products of the query vector of interest  with the 
keys of all input vectors, resulting in a vector of weights  for all the input tokens, which produces an attention 
matrix of shape [ ]. These dot products represent the similarity between each query-key pair. To normalize 
these raw attention scores, the model applies a softmax operation across each row to obtain the final attention 
weights. These weights essentially indicate the importance of each input position with respect to the query 
position. Finally, the attention matrix  is multiplied by the values vector to produce the attended outputs. By 
aggregating information from the entire sequence using attention weights, each output receives contextualized 
representations. 

By stacking multiple self-attention layers, Transformers can draw on information from the entire input 
sequence to derive contextualized representations of each individual element. This ability to reason over global 
relationships sets Transformers apart from sequential or convolutional networks and helps them learn more 
general representations from variable-length input/output sequences. Their parallelizable nature also makes 
Transformers highly efficient for time series modeling tasks.  
 

Fig. 2. Self-attention mechanism of transformer encoder 
(figure adapted from Bukhsh et al., 2021) 



 

3. Method 

We propose to use a self-supervised pre-trained model with an active learning strategy to address the problem 
of limited labeled data for fault diagnosis. We refer to our approach as a human-guided contrastive sensor 
transformer (HG-CST). This methodology builds upon our previous work (Bukhsh, 2022) utilizing self-
supervised learning, contrastive learning, and transformer architecture. Figure 3 provides an overview of our 
proposed methodology, which consists of two main components: pre-training a Contrastive Sensor Transformer 
(CST) model on unlabeled data and iteratively procuring the labels from oracle (or human annotator) for the 
most informative instances.  

The CST model learns general-purpose representations through a combination of the transformer architecture 
and contrastive learning. Unlike conventional RNN/LSTM models, we utilize a transformer encoder  to 
encode condition monitoring signals for fault diagnosis. Due to its self-attention mechanism, the transformer 
architecture can better capture the complex temporal dynamics within input sensor data compared to traditional 
sequential models. The contrastive learning framework aims to maximize the agreement between embeddings of 
an original input segment and its augmented versions. During pre-training using only unlabeled data, we 
generate different views of each input segment through various transformations. The original segment acts as the 
query , while its perturbed versions become positive keys . All other samples in a batch are considered 
negative keys . Through this framework, the CST encoder learns representations that are invariant to various 
transformations by maximizing similarity between the query and its matching positive keys, while reducing 
similarity to negatives. No direct supervision is required during pre-training. Further implementation details of 
the CST modeling approach can be found in (Bukhsh, 2022).  

 

Instead of using raw input data, we employ the pre-trained CST encoder to obtain generalized feature 
encodings of input signals, which capture patterns relevant to fault diagnosis. These embeddings provide a more 
robust representation of the data compared to the original high-dimensional sensor measurements.  We begin 
with an initial small set of labeled samples ( ) and a larger pool of unlabeled instances ( ). The goal is to 
incrementally label more samples from  to maximize model performance while minimizing the labeling effort 
required. Our active learning process first trains a simple multi-layer perceptron (MLP) classifier on the features 
embeddings from CST of the original labeled samples. This MLP is then used to predict the classes of 
instances in . To select the most informative samples from  for labeling, we employ an uncertainty 

 
Fig. 3. Human guided contrastive sensor transformer (HG-CST). 



sampling method called Smallest Margin (SM). SM is defined as the difference between the probabilities of the 
most likely and second most likely predicted classes for each sample (Lewis and Catlett, 1994). Samples with 
lower SM scores, where the classifier is less certain of the predicted class, are considered more uncertain. The 

most uncertain samples selected from  using SM are then queried from an oracle (human annotator) to 
acquire their true labels. These newly labeled instances are merged back into the labeled set . The MLP is 
retrained on the augmented  and the process repeats - selecting uncertain samples from  for labeling until 
the predefined active learning budget (e.g. maximum iterations) is reached.  

4. Experiments 

4.1. Datasets 

We evaluate the learning capabilities of our approach on open benchmark bearing datasets, i.e., Case Western 
Reserve University (CWRU) (Smith and Randall, 2015) and the KAT dataset provided by  Paderborn University 
(Lessmeier et al., 2016). Both of these datasets have been used widely for different fault diagnostic and detection 
tasks (Neupane and Seok, 2020). Table 1 provides an overview of classes in datasets for specific fault severity 
and fault type. The accelerometer sensor collected the CWRU vibration data at locations near and far off the 
motor bearing. The data is recorded with a sampling frequency of 48kHz and divided into sequence lengths of 
512 points, with two channels based on the measurement location. The KAT dataset provides high-resolution 
data consisting of six healthy and 26 damaged bearings. The data is collected at a sampling rate of 64kHz, which 
is further segmented into fixed-length windows of 1200 points. 

Table 1. Classes of statistics in the considered datasets with respect to fault severity & type  
(fault severity refers to the damage level applied on the bearings, except for healthy state H,  

the fault types present the specific damage location such as ball fault B, inner race fault IR & outer race fault OR). 

CWRU dataset           

Class 0 1 2 3 4 5 6 7 8 9 

Fault severity (am) - 7 14 21 7 14 21 7 14 21 

Fault type H B IR O
R 

B IR OR B IR OR 

KAT dataset           

Class 0 1 2 3 4      

Fault severity (mm) -   >2 >2      

Fault type H IR OR IR OR      

4.2. Experimental setup 

We train the CST model to serve as an encoder for feature extraction in the active learning loop. The CST 
takes non-overlapping signal segments of size N as inputs (see Section 3). The transformer encoder consists of 4 
multi-headed attention blocks with 64-unit MLPs. We apply global max pooling followed by layer normalization 
and tanh activation to obtain embeddings for pre-training.  The embeddings are passed to a contrastive model 
with bilinear similarity to compute the loss. The CST is trained for 100 epochs using the Adam optimizer with a 
learning rate of 0.0001 to minimize the negative log likelihood loss. For baselines, we consider a Convolutional 
Autoencoder (Conv-AE) and fully supervised Convolutional network (Conv-FS). The Conv-AE encoder has 4 
1D conv layers with increasing filters from 16-128 and kernel size 7, stride 2, with Reu activations and 0.1 
dropout. For classification, we keep the Conv-AE encoder, apply global max pooling and add a dense layer. 
Conv-FS uses the Conv-AE encoder structure directly on labeled data. 

We implement active learning using a pool-based sampling approach with a budget of 200 queries to the 
human oracle. At each iteration of the active learning loop, the simple MLP classifier is first trained for 100 
epochs on the current labeled set . The trained MLP is then used to predict the labels of all unlabeled instances 
in the pool  and calculate an uncertainty score (e.g. smallest margin) for each sample. Next, the most uncertain 

 samples are selected from  using either class-aware or class-agnostic sampling, where  is the batch size. 
Class-aware sampling selects 1 sample per class, while class-agnostic sampling picks samples randomly from 
the entire unlabeled pool , providing fewer labels per iteration compared to class-aware. The selected k 
samples are queried to the oracle for labeling, after which they are removed from  and added to the labeled set 



 

. This process is repeated at each iteration, querying the oracle to label the most uncertain samples, until the 
total number of queries reaches the defined budget of 200. By iteratively focusing on the most informative 
samples according to model uncertainty, our goal is to maximize classification performance within the limited 
annotation budget. 

4.3. Results  

Figures 4 and 5 compare class-agnostic and class-aware sampling across datasets and methods. It shows how 
the validation accuracy improves as more labeled examples are added after each iteration. It is important to note 
that the CWRU has ten classes, and the KAT dataset has four classes (see Table 1); therefore, CWRU had more 
labeled examples to begin with and would have more total samples to train under a class-aware setting. Figures 
4a and 4b show the performance of CST with HG learning on the CWRU and KAT datasets under a class-
agnostic setting. For both, uncertainty sampling yields higher validation accuracy than random sampling when 
limited to a small percentage of labeled examples. Figures 4c and 4d show the results using Conv-AE as an 
encoder for both datasets. Here, the uncertainty sampling also performs better on CWRU, but on KAT, random 
sampling eventually surpasses it despite initially lagging. This could be attributed to KAT containing fewer 
classes (4 vs 10 for CWRU), limiting the effectiveness of class-agnostic uncertainty sampling with fewer within-
class examples to refine the model early on. Figure 5 reports the validation accuracy under a class-aware setting. 
Here again, CST with HG learning obtained better results for both datasets, and uncertainty sampling 
consistently performed better. 

This analysis is further confirmed with the evaluation of the test set. Table 2 reports the test accuracy  
and provides several key insights into the performance of our proposed CST with HG learning and baselines 
under limited labeled data settings. The top portion shows that the fully supervised Conv-FS model achieves 
near-perfect performance close to 99% for CWRU and 96% for the KAT dataset when trained on 100%  
of the labeled training data. This establishes an upper bound on accuracy that emphasizes the challenge of data 
scarcity. Our proposed CST with HG learning approach significantly outperforms autoencoder-based baseline 
when labeled data is limited to less than 1%. On both datasets, our approach with class-aware uncertainty 
sampling achieves the best results, exceeding 90% accuracy on CWRU and 65% on KAT.  In class-aware 
sampling, using only the uncertainty approach provides a slight boost over random sampling. Class-aware 
sampling consistently outperforms class-agnostic sampling across methods and datasets. This indicates that 
actively querying the most informative samples according to the model uncertainty is valuable for training with 
minimal labels.  

Class-aware sampling enables a more balanced exploration of the decision boundary by targeting one sample 
per class at each iteration. While still lagging HG-CST, Conv-AE combined with HG labeling improves over a 
purely random baseline. This demonstrates the value of (self-supervised) pre-training and active learning 
working together to enhance a model with limited labeled data. 

Table 2. Comparison of test accuracy (%) with our approach (CST with HG) to other baselines  
(our approach obtains good performance while using less than 1% of the labeled training data).  

Dataset Model name 100% training data  

CRWU Conv- FS  98.97 

KAT Conv- FS 96.68 

Active learning results 

Less than 1% of labeled data Class agnostic Class aware 

Random Uncertainty Random Uncertainty 

CWRU HG-CST 80.25 82.88 91.07 92.82 

KAT  HG-CST 51.58 53.90 63.33 65.68 

CWRU Conv-AE with HG 50.49 55.55 71.95 75.33 

KAT  Conv-AE with HG 39.99 36.66 40.95 43.07 

      

 
 
 
 



 
Fig. 4. Validation accuracy of class-agnostic sampling on both CWRU and KAT datasets using CST and AE as pretrained encoders.  

 
Fig. 5. Validation accuracy of class-aware sampling on both CWRU and KAT datasets using CST and AE as pretrained encoders. 



 

5. Conclusion  

We present a human-in-the-loop approach called HG-CST that leverages self-supervised pre-training and 
active learning for efficient fault classification. The CST model captures general representations from unlabeled 
data, which are then refined through iterative feedback from domain experts. By querying only the most 
informative samples according to the model's uncertainty, our active learning procedure aims to maximize 
diagnostic performance using a minimal labeling budget. This balancing of automatic modeling and human input 
allows HG-CST to address real-world challenges of limited labeled data as new fault types emerge over time. 
Our experimental results demonstrate that HG-CST can achieve over 90% and 65% accuracy on two bearing 
benchmark datasets using less than 1% of labels, significantly outperforming supervised baselines under limited 
data conditions. In particular, class-aware sampling that balances queries across classes and prioritizes uncertain 
examples is shown to improve active learning effectiveness. This confirms that jointly leveraging self-supervised 
feature extraction, contrastive representations, transformers, and human guidance maximizes value from scarce 
labeled data. The proposed HG-CST framework provides a data-efficient solution for developing reliable 
predictive maintenance capabilities with effective human involvement. 

The future work plan is to evaluate the proposed approach on more datasets and expand the methodology to 
regression problems. While evaluated on bearing datasets, the underlying principles of self-supervised pre-
training, contrastive learning, and active sampling are broadly applicable to various machine monitoring 
domains. 
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