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Abstract 

The anticipated outcomes of Artificial Intelligence (AI) and Machine Learning (ML), revolve around enhancing efficiency, 
flexibility, and productivity in industrial and service sectors. However, there exists justified skepticism regarding the 
implementation of AI. This skepticism arises from the challenge of seamlessly integrating AI into the current workflows of 
operators in a manner that genuinely supports human involvement. Recent advancements in artificial intelligence, particularly 
in machine and deep learning, have resulted in unprecedented opportunities for automation, prediction, and problem-solving, 
significantly influencing operators and their operational dynamics with automation on the shop floor. Hence, it becomes 
imperative to adopt a user-centric perspective to promote the integration of AI within the human-technology relationship. 
Within this framework, adopting a human-centered strategy becomes crucial to facilitate a seamless transition and optimize 
potential benefits. This approach aims to encourage meaningful and effective interaction between operators and AI on the 
shop floor (Wilson and Daugherty 2018). In the TEAMING.AI project we took into account the fundamental principles of 
teamwork of Salas et al. (2005) and Endsley (2023) and adapted them such principles to the sphere of AI and human 
collaboration. The pivotal concepts include: Team leadership, mutual performance monitoring, back-up behaviors, 
adaptability, and team orientation. In this paper, we acknowledged the important role of planning and designing the Human-
Machine Interface to facilitate the quality, timeliness, and clarity of the required continuous communication loop by taking 
into account the Main phases for improving Human-AI teaming through situation awareness design. We demonstrate this 
approach by explaining the fundamentals of a human-machine interface and the applications in three different manufacturing 
environments. 
 
Keywords: human-AI teaming, collaborative intelligence, human-machine collaboration, human-machine interface, human-in-the-loop, 
human centered AI 

1. Introduction 

According to the literature -Lugo, H.D., et al, 2022, Hoch, T., et al, 2023, 
Boardman, Butcher, 2019; Endsley, M. R., 2023), there is a growing attention to developing collaborative 
intelligence structures that combine autonomous systems and humans rather than full autonomous systems. This 
perspective underscores the imperative of empower humans from the perspective of augmenting human efficacy 
and human performance as central objectives in the design of artificial intelligence (AI). This important need 
arises from the fundamental reality that humans bear ultimate responsibility for outcomes, both legally and 
ethically, within AI systems. Moreover, human skills such as creativity, empathy, and intuition warrant 
facilitative support within AI frameworks. Furthermore, empirical evidence, as posited by Endsley and Kiris 
(1995), highlights that individuals operate at peak efficiency when their engagement levels are elevated, thereby 
accentuating the necessity of maintaining active involvement within team roles. Consequently, the cultivation of 

ESREL 2024  
Monograph Book Series 



 

 

human-centric AI emerges as a foundational starting point, essential for the development of AI systems capable 
of satisfactory performance across diverse domains. 

The paradigm of human-centered artificial intelligence (HCAI) demands that to reorient the emphasis  
in the advances of AI technology and models from technological aspects to human considerations. Yet,  
research remains open to discuss the ambiguity regarding the efficacy of prevailing HCAI principles and 
methodologies in effectively attaining this objective. In the efforts to systematize these advancements, we, as 
researchers, together with governmental bodies, and institutions, must take directives, to operationalize the 
principles underlying HCAI (Jobin et al., 2019). Numerous governmental entities have delineated formal 
guidelines pertaining to HCAI (Zhang et al., 2021). For instance, the European Union has outlined seven 
essential criteria that AI systems must adhere to in order to engender trustworthiness, encompassing facets such 
as transparency, accountability, and promoting societal and environmental welfare (European Commission, 
2019). 

Bingley, W.J., et al, (2023) claimed that the HCAI systems encompass an amalgamation of guidelines, 
frameworks, and principles; however, a shortage of empirical substantiation exists regarding the adoption of 
these methodologies by AI developers, and whether the conceptualization and performance of HCAI meet 
adequately the user requirements. Consequently, the degree to which HCAI authentically embodies a 'human-
centered' approach remains ambiguous, specifically in terms of comprehensively apprehending the perceptions 
and impacts of AI systems on their users. This was one of the purposes of the TEAMING.AI project, to 
overcome the lack of flexibility in HCAI systems that exist in the Industry 4.0, though a human centered AI 
collaboration. 

2. Teamwork approach 

In the TEAMING.AI project, we considered the fundamental principles of teamwork of Salas et al. (2005) 
and adapted them such principles to the sphere of AI and human collaboration in the manufacturing industry. 
The pivotal concepts include: 

1) Team Leadership: Within a human-centric AI framework, it is imperative that humans retain leadership 
roles. This becomes crucial when performing decision-making tasks to maintain the effectiveness and 
independent actions of the teamwork. 

2) Mutual Performance Monitoring: This involves the reciprocal exchange of data between automation and 
AI-enhanced processes to enhance transparency. Both the automation and AI systems share information 
pertaining to their respective roles, as well as the inputs and outputs involved.  

3) Back-up Behaviors: The human agent critically assesses the accuracy of predictions related to decision 
support in diagnosing part defects and ergonomic risk assessments. This involves verifying the ground 
truth in real-world scenarios against the predictions made. Over time, this iterative process aims to 
furnish an improved dataset for the retraining of algorithms. 

4) Adaptability: In the context of work teams, adaptability refers to the capacity of employees to 
demonstrate flexibility and the ability to reconfigure tasks in response to shifting conditions. Closed-
loop communication is integral to this aspect, and careful consideration of behaviors needing 
adaptability is essential.  

5) Team Orientation: This represents the most critical and intricate aspect to address. According to various 
studies (Endsley 2023, Fan X., et al. 2008, Klein et al. 2014), a two-way flow of information is 
paramount in AI-Human teaming, with team-like behaviors such as collaboration, coordination, and 
support for joint planning and replanning deemed essential. Key capabilities for intelligent systems in 
teams can be succinctly summarized as follows: 
 establishing joint goals and understood roles while communicating when tasks cannot be performed; 
 possessing adequate mental models of team members; 
 being predictable and directable to each other; 
 sharing status and intentions; 
 interpreting the status and intentions of other team members; 
 negotiating goals, particularly in situations requiring adaptations; 
 collaborating in problem-solving, replanning, and re-tasking; 
 guiding teammates' attention to crucial signals, activities, and changes without overwhelming each 

other; 
 managing coordination costs to maintain acceptable workload levels. 

In the TEAMING.AI project, we endeavor to utilize knowledge graph representations to establish a 
foundation for a shared mental model of the problem space between human and AI agents. Furthermore, we 
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acknowledged the pivotal role of planning and designing the human-machine interface to facilitate the quality, 
timeliness, and clarity of the required continuous communication loop. 

3. Human-machine interface for mutual performance monitoring and transparency 

Endsley (2023) sustains that there is a need to develop a systematic approach to discern the specific 
components of situational awareness (SA) that should be included in displays for a given AI application. The 
critical aspects of transparency and explainability within AI systems serve unique functions in reinforcing the 
situational awareness and cognitive models of human operators responsible for interacting with and supervising 
AI operations (Enrique Munoz-de-Escalona, et al, In press). This recognition underscores the pivotal role of 
these elements in striking a delicate equilibrium between trust and team performance while collaborating with AI 
systems. In practical terms, this equilibrium is frequently manifested through the development of interfaces. 
According to Endsley (2023), a systematic approach is imperative for identifying and integrating the precise 
components of situational awareness (SA) necessary for displays tailored to specific AI applications. 

The process to enhance and improve the human-AI teaming through improving the mutual performance 
monitoring and transparency involves the analysis of situational awareness (SA) requirements (Endsley, M. R., 
2023). Moreover, this process requires the iterative refinement of the user interface utilizing SA design 
principles, and the assessment of user interface displays using SA metrics alongside evaluations of performance 
and workload. This procedural framework is applicable to crafting transparent displays aimed at facilitating 
collaborative human-AI team purposes.  
 
 
 
 
 
 
 
 
 

Fig. 1. Main phases for improving Human-AI teaming through situation awareness design (Endsley, 2023). 

4. Case studies: industrial applications 

The development of the methodology explained in previous sections has been applied in three case studies to 
demonstrate its usability in real industry-based applications. 

4.1. Quality control 

The first case study is developed in a plastic injection molding process. Injection molding involves creating 
molded items by injecting heat-melted plastic materials into a mold, then allowing them to cool and harden. This 
technique is well-suited for mass-producing items with intricate designs. The technique is being applied in a 
broad range of manufacturing industries. In our particular case, this technique has been applied for 
manufacturing plastic-injected parts for the automotive industry. The quality of the resulting products is 
predominantly influenced by various process conditions, including injection temperatures, pressures, speeds, and 
ambient temperatures. The specification of optimal process parameters, environmental conditions, and other 
factors impacting product quality proves challenging through contemporary analytics. Consequently, quality 
losses and waste occur toward the conclusion of the product cycle.  

In this case study, machine learning models are used in the quality control process to identify defects in the 
produced plastic parts. These models are being designed in a human-centered approach to support the operators 
that currently are in charge of manually inspect the produced parts coming out of the molding machine and 
separate the faulty parts from those meeting the quality requirements. Common defects such as short shut, sink 
marks, flow lines, and missing subparts may manifest during the plastic injection process. The escalating 
diversity of product types further leads to reduced lot sizes, resulting in a diminished dataset for training a 
customized model to achieve the requisite high accuracy and quality standards, particularly within target 
segments such as the automotive industry. 



 

 

To adhere to stringent quality standards, the inclusion of a human quality control step is imperative to 
preclude the dispatch of defective parts to customers. The proposed human-in-the-loop approach for the mock-up 
designs take into account two conditions. Firstly, there is a human factor aspect, encompassing elevated mental 
workload and stress stemming from time pressure and the risk of overlooking features crucial to quality. 
Secondly, from an economic perspective, the process leads to an extended product cycle time attributed to the 
bottleneck in manual quality inspection. 

The mock-up developed provides a way to integrate process and quality parameters (failures, production 
speeds, quality issues, etc.) by the operators to feed the knowledge graph in the TEAMING.AI engine. This 
information is used for quality control, so operators in the shopfloor can adapt the physical parameters in the 
production line. 

4.2. Machine and process diagnostics 

This case study emphasizes machine and process diagnostics, rather than solely assessing product quality at 
the conclusion of the injection molding process. The diagnostic scope extends from pre-processing, 
encompassing activities such as insert preheating, raw material testing, dyeing, and drying, through the injection 
process itself, involving variables such as temperature, pressure, and molding cycle time, to post-processing, 
which includes annealing and humidity considerations. The significance of process diagnostics becomes 
especially pronounced when transitioning the process to a new product with distinct characteristics and process 
parameters. In such instances, the consequences of process modifications on product quality and initial waste 
remain uncertain. Moreover, the characteristics of molds in the injection molding machine undergo alterations 
during the initial transient phase until attaining a stable state for commencing the production of the new plastic 
part. 

The objective of a Human-Machine Interface embedded in the intelligent system being developed in the 
TEAMING.AI project is of interfacing with both the injection machine's control unit and the operator's inputs 
via Human in the Loop (HITL) Dashboards. This system aims to autonomously modify the parameters of the 
TEAMING.AI platform for quality control in instances where a deviation from the nominal is detected, 
contingent upon the availability of sufficient trust assurance evidence.  

Utilizing the TEAMING.AI engine and knowledge graphs as foundations, a comprehensive system 
encompassing machine learning, and Human in the Loop (HITL) techniques is being developed. This system is 
specifically designed to facilitate interaction between operators overseeing production lines and the ML 
predictive models. Furthermore, the dashboard in the HMI mock-up for data input is being developed to 
incorporate production state issues (such as failures, production speeds, quality concerns, etc.) as reported by the 
operators. Additionally, an active learning (AL) system is being formulated to integrate both operator inputs and 
machine process data with the purpose of predicting purposes for the thermoplastic injection process, i.e., 
prediction of the next defective part. 

4.3. Ergonomics assessment 

In this case study, manufacturing machine operators are required to manually manipulate and secure 
substantial-sized and weighty components in precision manufacturing machinery, specifically for grinding or 
milling operations characterized by stringent quality standards. This procedural undertaking significantly 
contributes to the overall duration of a work order, and concurrently exposes workers to occupational hazards.  

The execution of the Computer Numerical Control (CNC) program is predominantly carried out through 
manual intervention. The duration of execution varies significantly, ranging from 3.5 to 5 hours for the identical 
CNC machining program, contingent upon the proficiency and experience of the machine operator. This wide 
range contributes to a notable overall variability in execution time. Operators are attentive to the computer 
screens to know when they are required to execute a manual task or when to approve an automatic action that the 
machine will perform. Given the inherent work hazards and potential mental stress associated with the process, 
this circumstance proves unsatisfactory for human operators. 

The design of a low fidelity Human-Machine Interface mock-up is proposed to integrate observational data 
obtained from a visual tracking system with pre-existing scene and process knowledge, incorporating in-process 
feedback from the human operator through the use of portable devices. Information pertaining to the scene, part 
geometry, and procedural workflow patterns for handling and processing steps will be encoded within the 
knowledge graph, along with safety policies. The knowledge graph will undergo real-time updates based on 
current position specifications during working hours. The integrated self-diagnostics system will assess its level 
of consistency and completeness, expressing its epistemic self-trust. In instances of ambiguity, the human 
operator will be prompted for feedback. 



 

 

In addition, to this mock-up can provide information in the programmed task for the machine. The system 
should provide with the reaming time before operator intervention so they can plan their actions accordingly. 
The operator should have access to this screen from different devices. 

5. Results: mock-up storyboards 

In this section the first mockups of the Human-Machine Interfaces are shown to demonstrate the fundamental 
principles of closed loop-communication within the teamwork that is being developed in the TEAMING.AI 
project. Based on the requirements assessment previously done, presented in  (2022), the mock-ups 
for each of the cases are presented. Due to space constraints, only the most relevant screenshots are shown in this 
document. 

5.1. Quality control interface 

This constitutes part of the storyboard for the HMI developed for plastic-injection machines used in the case 
study explained in Section 4.1. The following segment contains details of how to navigate the different screens 
and the usability of the low-fidelity HMI. 

In Figure 2, the main screens that should be presented to the operator when initiating production are shown. 
The following features should be in each screen to increase accessibility and operator situational awareness: 

 System configuration screen: This button will show the system configuration screen shown in 
Figure 2a. 

 Image labelling screen: This button shows the data labelling screen, see Figure 2b. 
 Quality control screen: This screen is shown when operator needs to manually input the defect found in 

the produced part, refer to Figure 2c. 
 Historical records screen: This button shows the records of all the incidents (defective parts), Figure 2d. 

 

Fig. 2. Mock-up main screens for case study 1: (a) System configuration screen; (b) Image labelling;  
(c) Quality control screen; (d) Historical records screen. 

 
The features specific for the system configuration screen, in Figure 2a, are explained as follows. The Machine 

Selection (Mach) - this section contains buttons with the numbers of the machines available in the shopfloor. The 
Mold selection (Mol) shows a list of the available machine molds that will be available. The ML model selection 



 

 

will show the different Machine Learning (ML) models available for predictions (e.g., CNN: Convolutional 
Neural Networks, DT: Decision Tree, RF: Random Forest, BBN: Bayesian Belief Network). At the moment, 
there is no model update mechanism, this situation should change when the data labelling and training process 
are completed.  

The OK button is used to proceed to the Selection mode screen once all parameters have been set. The screen 
in Figure 2b, contains the following items: The picture space is the main part of this screen. It shows a picture 
(not a video) of the plastic part recently produced. The ML Prediction (timer) is an colour-coded indicator 
containing the prediction made by the ML model for operator verification. Such predictions will be: 

 Non-defective part presents no production defects. 
 Defective part presents imperfections. 

The indicator will have a (timer) giving a few seconds for the operator to validate (by clicking the Yes button) 
or reject (by clicking the No button) the prediction displayed. If operator does not choose either of these options, 
the prediction produced by the ML model will be recorded for that image. This indicator is colour coded so that 
the operator has a better situational awareness about the accuracy of the prediction produced by the ML model. 
The Yes this button approves the prediction by the ML model. The No button rejects the prediction. The operator 
should specify the defect found for that part in the Quality Control screen. The Last Defect name button changes 
dynamically the name of the previously recorded defect. The operator should click this button instead of the NO 
button if the ML prediction is incorrect, or the defect name shown in the Last Defect name button corresponds to 
the defect found in the current produced part. 

The table, shown in the Figure 2c, contains all the possible defects a defective part can have. The defects are 
listed by default by Frequency (Freq. column in the table), the most frequent ones will be shown on top. The user 
needs to select one defect and then click Report to label the current image with the selected defect. User can 
browse through all the list by using the up and down arrows shown in the right-hand side of the screen shown in 
Figure 2c. The table contains the following columns: ID (Defect identification number; Defect - to select the 
defect name from a list available), Freq. (Frequency of events when such event has occurred). 

The screen in Figure 2d contains the following features: The Interval functionality allows to enter the time 
range of events to be shown in the table; the Export to Excel button exports data set to a .xlsx, cvs, etc. external 
file; Delete label will delete selected event from the table; the Modify label function will modify the label 
previously recorded in the table. The table has the following sections: Date, Time, Defect name, of event 
recorded; the Fixing procedure column contains details on the physical parameter changed to fix the problem 
producing defective parts are entered, and the Operator comments about the conditions of the incidence 
(machine and process diagnostics screen). 

5.2. Machine and process diagnosis mock-up 

This is the storyboard for the HMI developed for plastic-injection machines used in the Case Study 4.2. The 
screens regarding the configuration of the system is very similar to that in Figure 2a. Therefore, here we will 
focus on the screens that are different to the one mentioned. 

The screen in Figure 3a, presents the Incidence Register which corresponds to the main screen of the human 
machine interface (HMI) that allows the operator to register the incidence if the piece has any imperfection. If 
the produced piece does not meet the quality criteria, the operator should hit the No button. Then the operator 
will be taken to the Parts quality control screen shown in Figure 3c. In the screen Figure 3a, the operator is able 
to see a small summary of the recently produced parts recorded in the bottom left side of the screen, the entries 
in red correspond to defective parts. If the defect found in the newly produced part is the same as the previous 
the operator can press the red button labelled No.  

A reminder like that in Figure 3b, is displayed to remind the operator that all parts produced will be labelled 
by default as Yes, meaning that they do not have defects. This alert message that pops up to engage the operator. 
The meaning of the message is that if the operator does not give feedback on the defective part, the respective 
label will follow the label given by the machine learning model. This will avoid the operator from the extra work 
of clicking the Yes button for each produced part and avoid work overload. 

As mentioned before, once the No option is selected in the incidence register screen (Figure 3a), the operator 
will be taken to the Parts Quality Control screen shown in Figure 3c. In such a screen, the operator can select the 
defect found in the produced part from the list presented. Once a defect is selected, the operator is taken to 
another screen where a list of sub-defects specific for the defect selected is displayed for the operator indicate 
such information according to their observations of the part produced. There is always the Back button to back 
and select another defect in case of error selecting the previous option. Once all the information regarding the 
defect is input, the user should click on Report, so the time-stamped label is saved. 

 



 

 

 

Fig. 3. Mock-up main screens for case study 2: a) Labelling screen INCIDENCIA, b) Reminder screen,  
c) Quality control screen, d) Defect fix suggestion screen. 

 
The user can access the Suggestions screen (Figure 3d) by clicking on the third button from the left located in 

the top-right corner. In this screen in which the injection technician can report the procedure followed to fix the 
parameters of the machine, Fixing procedure. A list of pre-loaded process indicated the parameters to be 
changed to fix the problem causing the defective parts is shown in this table. The technician should tick in order 
the steps followed to fix the problem. The box in the top right (Details of incidence) shows a quick summary of 
the incidence selected from the historical records. The technician can see the type of defect being addressed and 
the date and the sub defect. In the box labelled as Comments relevant details about the incident and information 
are given. In the last box the technician can leave a comment about the resolution of the issue. 

5.3. Ergonomics assessment 

The shown mock-up screens in Figure 4 are a result of having a continuous communication with the use case 
providers and the end users, i.e., the operators at the shop floor. The first visit to the use case provider was done 
in March 2022 to verify the user requirements and enhance the needs by directly observing the activities that the 
operators carry out in a day-to-day journey. A second visit was done in June 2023 when a first version of the 
mock ups was shown to the operators to obtain their feedback regarding the usability and user satisfaction with 
the models provided. This HMI has two main modes: Live and Historical, this mode is shown in the top-left 
corner of each screen. 

Once the user has logged in, the configuration of the system must be done to start the video recording that 
will be used for the ergonomic assessment. To complete this action, the user should input the information 
requested in the screen shown in Figure 4a. The user must input the information regarding the production order 
before starting the recording. The information requested from the user is: the Product code that refers to the 
internal product ID of the metal part being machined; the Type of activity that the operator will carry out during 
the recording time with a drop-down menu is displayed with a list of all the activities an operator normally 
performs; Comments, this space is reserved for user to input comments regarding the production, e.g., anomalies 
observed, conditions of production, etc. This display gives the option to program a recording time in the 
Schedule recording section. A start and end time and date are selected. Once, the production details and 
recording time are set, the start recording gets activated and user can click on it to start the recording. Once the 



 

 

recording has started the screen below is shown. This is called the live screen which shows an overview of the 
ergonomic assessment in close to real time.  
 

 
Fig. 4. Mock-up main screens for case study 3: (a) Configuration screen; (b) Live screen: current postures assessed;  

(c) Historical records screen; (d) Historical records screen with score explanation per posture. 
 
The live screen, shown in Figure 4b, consists of several sections dedicated to provide a general overview of 

the ergonomic risks related to the tasks performed by the operator in the shopfloor. On the very left, the pause 
recording and stop recording buttons are located. The first section to the right is the live video of the shop floor, 
shown in the section labelled as live screen with digital model of current recording. Below this video, the 
Current recording status shows details about the recording, such as: time elapsed, product code, order ID.  

Furthermore, the table labelled as events registered for current order, contains the date event number and the 
ergonomic score (that is based on the REBA tool, Hignett and McAtamney, 2000) for events with scores above 
the set threshold. The human body diagram is dived in the different limbs that the REBA tool assesses and is 
colour coded with red representing a high ergonomic risk level and green a low risk level as detailed in the table 
underneath labelled as Risk Level. A breakdown of the ergonomic score is presented in the table in the bottom of 
the screen labelled as details of ergonomic assessment. The table contains information about the number of 
events (this counter increases one unit every time the operator takes an ergonomic position with risk above the 
threshold), recording time and the individual score per each limb together with the risk colour (below the score). 
This table allows for a better understanding of the body parts that are in more risk. This information can be used 
during periodic meetings with the operators to revise and correct such events. 

By clicking on the Historical button at the top of the screen, the user will have access to the database of the 
events when the operator was in an ergonomic risk level higher than the defined threshold. Figure 4.c. shows the 
historical display of the Ergonomic Risk Assessment Tool. It is composed of two different sections. In the upper 
part of the left section labelled as Select a range for ergonomic-score search, the user can choose the range of 
score they want to search for among the large number of damaging events. Then, thanks to the date and time 
filter, pressing on the button Date they can select start date, end date, start time, end time. In the right-hand side 
of screen shown in Figure 4c, it is possible to access more details on the event that was labelled as 
ergonomically-risky together with the option to open the piece of recording showing the moment the operator 
had a risky position. This can help to identify different ways to perform the same activity in a safer way. 

If no event has been selected, the right side will show the overview of the risk assessment as shown in Figure 
4.d. This screen also gives the option to the operator or the reviewer to correct or approve the label assigned by 
the AI to the event being analysed. This is done by clicking on the buttons Correct to approve, or Incorrect to 
discard. Moreover, information about the tool weight can be entered in the Tool weight box. To make the user 
more aware of the level of damage and the ergonomic assessment, by clicking on any part of the body of the 



 

 

human figure or on the last row of the table in the right window, a recommendation window appears to explain, 
thanks to the image in the second column, why the current posture is harmful and what the optimal posture is. 
The information displayed is based on the REBA tool (Hignett and McAtamney, 2000). 

6. Conclusions 

In this paper, we have provided some preliminary results of the low fidelity mock-ups designed under the 
Human-AI teaming through situation awareness approach. To understand such an approach a review of the 
increasing attention that Human-AI collaborative (or teaming) systems has been done followed by the general 
concept of teaming and its importance in the human-machine interface. The case studies presented are focused in 
manufacturing industries resolving, however, different problems. Subsequently, the AI modifies its behaviours to 
positively influence ongoing collaboration. 

In the mock ups presented in Section 5.1 and 5.2, the AI teammate demonstrates adaptability by initially 
acquiring knowledge about various facets of the human's decision-making process, codified through a 
knowledge graph. Conversely, the human adapts by incorporating the support provided by the AI team member 
and offering feedback to refine suggestions when proven correct or incorrect. For instance, in the phase of data 
labelling in case studies in Sections 4.1 and 4.2. As AI adapts through progressive learning algorithms, the 
provision of updates by humans becomes pivotal in instigating the process of allowing verified data to reprogram 
the algorithm itself. It is imperative to recognize that excessive reliance on decision support might lead the 
human to diminish their capability over time to independently verify suggestions. Thus, assigning tasks to keep 
the human in the loop and maintain competency is crucial.  

In the results shown in Section 5.3, the human agents are expected to reciprocate by sharing data on their 
performance, as exemplified in the use case concerning the ergonomic assessment of a turning table setup and 
clamping (please refer to case study in Section 4.3). The operator's tasks are systematically recorded and 
analyzed via video, providing feedback to the operators regarding the potential risk of exposure to Musculo-
Skeletal Disorders (MSDs). 

 
The way forward 
As mentioned earlier, the development of such HMIs has been a result of assessing the requirements of the 

users as presented in , et al. (2022). The authors hope that the presented interface mock-ups can contribute 
to the empirical evidence such that a human-centric AI can be capable of perform satisfactorily across diverse 
domains. However, further studies are needed to measure how the interfaces help the Human-AI teaming 
according to Endsley (2023).  
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