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Abstract 

This paper updates aspects of the dependency assessment method developed previously by the Korea Atomic Energy 
Research Institute (KAERI) and demonstrated for the EMBRACE HRA. This method represents a novel approach to 
modeling and quantifying dependency between human failure events (HFEs), predicated on shared temporal resources (TRI) 
and similarities in cue recognition (CRD) and procedure transition (PTS). However, the current version of this method is 
designed to assess dependency between two HFEs only. The possibility of multiple (i.e., more than two) dependent HFEs in a 
cut-set requires a corresponding update to the dependency assessment method to ensure that realism and conservatism are 
properly retained when extending this methodology to multi-HFE cut-sets. Accordingly, this paper proposes an updated 
methodology to efficiently compute the dependency between three or more HFEs, that is firmly rooted in both theory and 
empirical data. 
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1. Introduction 

Dependency assessment in human reliability analysis (HRA) has been the subject of a sizeable body of 
research in recent years (Kim et al., 2015; Mortenson and Boring, 2021; Paglioni and Groth, 2022). Briefly, 
dependencies are the causal relationships between the modeling elements in HRA that can alter the human error 
probabilities (HEPs) used in probabilistic risk assessments (PRAs)  (Paglioni and Groth, 2021). Critically, recent 
work has stressed the importance of moving beyond the dependency framework set up in the Technique for 
Human Error Rate Prediction (THERP), one of the prototypical HRA methods developed through the 1980s 
(Swain and Guttmann, 1983). This is an important development because current HRA dependency assessment 
methods are largely not rooted in empirical data or literature, instead relying upon the rule-based method and 
equations developed in THERP.  Recent work at the Korea Atomic Energy Research Institute (KAERI) has 
leveraged the availability of HRA data to create an empirically-based dependency assessment methodology, a 
significant step forward for realism in HRA (Kim et al., 2023). This development coincides with recent work at 
Idaho National Laboratories (INL) that identified dependency signatures in empirical data (Boring et al., 2023) 
and at the University of Maryland that developed a causal model structure for HRA dependency informed by 
data (Paglioni and Groth, 2023a, 2023b).  

Focusing on empirical data for developing HRA dependency assessment methods has the distinct advantage 
of predicating these analyses on observed data, in addition to literature, and improving the realism of HRA 
dependency assessments. However, the recent method developed at KAERI considers dependency only between 
two HFEs in a cut-set. This stands in contrast to applications of HRA in the nuclear power industry, where 
multiple-HFE cut-sets (i.e., those cut-sets with three or more HFEs present) are common. However, the results 
obtained with the KAERI method are promising, and therefore extending this method to accommodate more 
HFEs is important to ensuring that such a method is useable in industry. Accordingly, this paper presents 
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recommendations for updating the KAERI dependency assessment method to be applicable to multiple-HFE cut-
sets.  

The remainder of this paper is structured as follows. Note that there is only limited background information 
provided on HRA dependency. This has been well-documented in recent research, including in (Boring et al., 
2021; Kim et al., 2023). Instead, this paper will focus on the recently-developed KAERI dependency assessment 
method and the recommendations for extending the method. Section 2 reviews the current state of the 
dependency assessment method and the different factors used within. Section 3 presents the recommendations 
for extending the method to multiple-HFE cut-sets. Section 4 discusses the impacts of this method on HRA 
practice, and Section 5 concludes with a discussion of future research needs to understand dependency in HRA.  

2. Background  

The HRA dependency assessment method under study was developed by KAERI in 2023, and first 
implemented within the EMBRACE HRA method, also developed by KAERI (Kim et al., 2019, 2020, 2021). 
This method incorporates the latest work on HRA dependency and how dependency exists within a system. 
Critically, this method incorporates four aspects of human performance that are causally important to 
dependency in HRA, which are briefly explained below (Kim et al., 2023): 

 Feasibility impact: an antecedent human action may directly influence the feasibility of future human 
actions, for example by damaging equipment required for successor tasks. This will therefore directly alter 
the HEP for successor tasks.  

 PSF impact: an antecedent human action may cause a change in the performance shaping factors (PSFs) 
that define the situation (e.g., local PSF states) in which successor tasks will take place. This relationship, 
similar to the situational dependency from (Paglioni and Groth, 2023a), will indirectly affect the HEP for 
successor tasks by modifying the PSF states surrounding performance.  

 Resource impact: two human actions may share temporal or spatial resources, in which case an antecedent 
HFE could affect the resources available for successor tasks. This relationship, similar to the resource-
sharing dependency from (Kichline et al., 2021; Xing et al., 2021), will indirectly affect the HEP for 
successor tasks by modifying the resources available for performance.  

 Mental model impact: two human actions may share aspects of a mental model, the internal model people 
make of a scenario based on their experience, knowledge, and training. As a result, a mental model shared 
between two human actions will enforce a dependency similar to the common context dependency 
described in (Paglioni and Groth, 2023a). Mental models are difficult to represent, and the effects on 
dependency are still being understood. The authors discuss the incorporation of mental models in 
dependency in (Kim et al., 2024).  

The dependency method incorporates these causal aspects by predicating the computation of conditional 
human error probabilities (cHEPs) on six factors and using empirical data, expert opinion, and similarity 
measures to quantify the effects of dependency. Currently, the method is designed for use with positive, HFE-
level dependencies, e.g., it does not include interdependencies between PSFs, major crew functions (MCFs), or 
other lower-level causal modelling elements in HRA. This is in accordance with typical use-cases of HRA, 
which are focused at the HFE level to facilitate easy incorporation into PRAs. Furthermore, this method assumes 
(appropriately) that cases in which the antecedent HFE directly affects the feasibility of successor tasks are 
modelled separately in the fault trees or event trees of the parent PRA. Therefore, the feasibility impact above is 
not included in the dependency assessment discussed herein. Finally, this method is employed when there are 
two HFEs in the same accident sequence minimal cut-set model.  

Equation (1) defines the computation of the conditional probability of a successor HFE, B, given the 
occurrence of an antecedent HFE, A, based on six dependency features which are explained in Section 2.1. For a 
full discussion on this method and the dependency features, see (Kim et al., 2023). 

 

   (1)  

3. Dependency features 

Equation (1) relies on six dependency features that define causal relationships between the antecedent event, 
A, and the successor HFE, B (event is used here instead of HFE, because there are cases in which the antecedent 
event A is technically a success, but still enforces a dependency to the subsequent event/HFE B). Briefly, these 
six dependency features are:  



 

 Temporal resource insufficiency (TRI): the probability that the successor event is temporally infeasible 
within the time available following the antecedent event. TRI is computed per Equation (2).  

 (2)  

In Equation (2),  is the endpoint of the availability window for the successor HFE, B, and  is the 
endpoint of the required time to perform the antecedent event A. The interval  is the length of 
time required for performance of successor event B. The  term is the standard deviation of lognormally-
distributed performance times.  

 Procedure transition similarity (PTS): the similarity between procedural flows in both events A and B. This 
is computed with the Smith-Waterman algorithm to assess the alignment between procedural sequences.  

 Cue recognition dependency (CRD): the HEP for a successor event will increase if performance of that 
event relies on the same cue (information from procedure or instrument) as a previously-failed event. The 
reasoning is that, in the absence of new cues, there is no chance for the operators to adjust their mental 
model or gain new information following a failure, and thus a successor failure is more likely. Two events 
sharing the same cue have a CRD value of 0.5; the CRD is 0.0 if there are new cues available for the 
successor event.  

 Recovery factor (RF): if the time available for a successor event is sufficiently long, i.e., longer than the 
sum of the time available for the antecedent event and the 95 percentile of the time required for the 
successor event, there is a possibility of recovering the failure on the successor event. Empirically, 
recovery failure probabilities are on the order of 0.5; thus, RF = 0.5 when recovery is possible, and 1.0 
otherwise.  

 Crew sameness (CS): The sameness of the crew impacts whether the preceding dependency features (TRI, 
PTS, CRD) are impactful between two HFEs. If the crew is the same between both HFEs, these features 
are considered in dependency (CS = 1.0). If the crew is different between both HFEs (e.g., due to shift 
change or performance location change), then these factors are disregarded (CS = 0.0).  

 Additional contextual effect (ACE): additional contextual effects are considered when the PSF states for 
the successor HFE are expected to change from the PSF states assumed in the calculation of the individual 
HEP ( ). The PSF changes resulting from HFE A occurring are considered, and used to adjust the 

 
The dependency assessment method was tested on two case studies in the nuclear power operations context, 

which revealed that this method is similar in computational intensity to the EPRI dependency assessment method 
(EPRI, 2016) and arrives at similar or lower HEP values. Therefore, the dependency assessment method 
addresses the hyper-conservatism present in many HRA dependency assessments (Boring et al., 2021). However, 
as mentioned previously, the method is designed for use with two HFEs, and is thus not currently applicable to 
cut-sets featuring more than two HFEs. To rectify this, we provide some recommendations for extending this 
methodology to three or more HFEs in Section 3.  

4. Recommendations 

Perhaps the simplest way to extend the current method to three or more HFEs would be to simply perform 
pair-wise assessments between all the HFEs in a cut-set and use the maximum value to ensure appropriate 
conservatism. For instance, in a cut-set containing N HFEs, this would involve computing  for all HFEs 

, and then setting . However, doing this neglects 
scenarios in which a successor event is dependent on multiple antecedent events, for example an event N that 
shares a crew with event N-1, temporal resources with event N-2, cues with event N-3, etc. Accordingly, a robust 
treatment of multi-HFE cut-sets requires assessing the individual dependency features among the HFEs, rather 
than assessing the total dependency quantification. 

Accordingly, this section will review each dependency feature used in the current method, and focus on how 
that feature could be extended to consider three or more HFEs. These recommendations are meant to promote 
the incorporation of this dependency assessment method into current HRA assessments. These recommendations 
have been designed to adjust the validated method with minimal revision to the underlying mathematics in 
Equation (1). That is, this work does not recommend changes to the theoretical or empirical bases of the method; 
such recommendations would require significant research into the mechanics of each dependency feature. 
Research into the theoretical bases of HRA and dependency is ongoing among several research groups.  



 

Sections 4 and 5 will discuss future research areas that should be explored to better understand dependency in 
HRA and inform the next generation of dependency assessment methods.  

5. Temporal resource insufficiency (TRI) extension 

The current calculation of the TRI feature is presented in Equation (2), and captures the relationship between 
the time required for the successor event (i.e., the event for which dependency is being computed) and the 
antecedent HFE. However, when extending to cut-sets featuring more than two HFEs, it is clear that the 
temporal resources shared by all antecedent events must be considered. For example, if the successor event is the 
Nth HFE in a cut-set, there are N-1 antecedent events that require time for performance, and which thus will 
impact the time available for performing the Nth event. As a result, the TRI feature for the Nth HFE must 
consider the time intervals used in the preceding events.  

Accordingly, it is recommended that the TRI feature for the Nth HFE in a cut-set be computed according to 
Equation (3), which considers the time intervals required for performing the preceding events.  

  (3)  

In Equation (3), note that the term , the endpoint of the required time interval for the single antecedent 
event A, in the numerator of the lognormal function from Equation (2) has been replaced by a sum. Specifically, 
Equation (3) computes the sum of the time intervals required for all antecedent events. Therefore, Equation (3) 
considers that the time available for the successor event N may be strained by multiple antecedent events. That 
is, the time required to perform the antecedent events will reduce the time available to perform the successor 
event, represented by . 

6. Procedure transition similarity (PTS) extension 

The PTS feature quantifies the similarity in procedural sequences between two events using the Smith-
Waterman algorithm. This algorithm computes the similarity in the text of procedures, and the PTS metric is 
based on the assumption that similar procedures will trigger similar mental models and modes of performance. 
Therefore, if a successor event has a similar procedure flow as a previous failure, it is more likely that the 
successor event will also be failed. It stands to reason that this effect is not limited to subsequent events, but may 
exist across multiple events and so it is important to account for PTS across all HFEs in a cut-set.  

In order to extend PTS to all HFEs in a cut-set (from the initial consideration of two HFEs), it is 
recommended that a similar pairwise calculation to the TRI extension be conducted. This will capture the 
procedure transition similarity between all HFEs in a cut-set. Thus, for a given HFE N, the PTS is computed 
based on the maximum similarity between HFE N and all of the antecedent events per Equation (4).  

  (4)  

In Equation (4), the PTS computation  is found using the Smith-Waterman algorithm as before. The 
maximum value of the PTS metric is taken to identify the antecedent HFE that has the biggest impact on 
dependency. Then, as in the original calculation (Equation (1)), this value is modified by the recoverability and 
crew similarity (RF and CS, respectively) between the antecedent HFE and the successor HFE under study.  

7. CRD Extension 

The CRD feature quantifies the dependency enforced between two events that share the same cue, or 
(e.g., a step indicating a transition) and/or 

instruments (e.g., a visual check revealing an anomalous reading). Extending the CRD feature to multi-HFE cut-
sets requires similarly discounting the cue similarity based on the time elapsed between the first appearance of 
the cue (prompting the antecedent event) and the subsequent appearance (or use) of the cue (prompting the 
successor event). Thus, a similar weighting procedure as in Equation (4) should be applied for the reduction in 
cue recognition due to intervening events. Note that the memory decay model introduced herein assumes that the 
mental model associated with a cue decays over time in the same manner that the PSF set decays. This effect has 
not been fully supported by data, and so should be investigated thoroughly via future research.   



 

The dynamics of memory are still being unravelled, although there is some evidence from psychological 
studies that points to a passive 
appearance of a new cue (Meiran et al., 2000). e., 
the performance decrease caused by rapidly switching tasks) associated with longer intervals between the 
previous task and the cue. Further, 
PSFs and biases) employed during Task N-1 dissipates rapidly during the performance of Task N . Therefore, it 
stands to reason that the cue recognition dependency between two events decreases with the number of events 
that intervene. Another set of experiments on positional effect in recall for lists of various lengths indicates that 
cues recall decreases with the time between appearance and retrieval of the cue (Brown et al., 2007).  

The evidence from psychological experiments into free recall memory and cue retrieval indicate that the cue 
retrieval probability declines with time between appearance and retrieval (Brown et al., 2007; Meiran et al., 
2000)
between two HFEs prompted by similar cues, is rapidly dissipated after the appearance of a new, dissimilar cue 
(Meiran et al., 2000). Fs, will dissipate between two 
HFEs and thus decrease the effect of CRD. The decay of higher-level task sets, e.g., the set of PSF states, has 
been disputed, although the decay theory remains central to current models of cognitive control (Grange and 
Cross, 2015). Accordingly, it appears appropriate to base the decay of CRD on this decay theory.  

Therefore, we propose that CRD be weighted according to the number of intervening events, in accordance 
with evidence presented in (Brown et al., 2007), which indicates the probability of recall for the first item in a 
list of varying length is a function of list length, as shown in Table 1. Here, it is assumed that the appearance of a 
cue, and therefore the presence of the specific PSF set associated with the cue, is analogous to the first item in a 
list of items to be recalled. For example, if a cue appears in HFE A and then again in HFE F, recalling the cue 
(and corresponding PSF set) requires recalling the first item in a list of five items.  

Table 1. Recall probability as function of list length (Brown et al., 2007) 

Intervening Events Recall probability (1st item) 

9 0.7 

14 0.6 

19* 0.4 

29 0.25 

39 0.2 
*Average of two experiments 

 
Using least squares regression allows the above data to be fit to an exponential decay model for recall 

probability. The probability of recall for the first item in a list is related to the intervening number of tasks (x) by 
Equation (5).  

  (5)  

This may appear to treat the cue itself as an item to be recalled, rather than a prompt to a cognitive process. 
However, operating under the assumption that a cue prompts the creation (or retrieval) of a specific PSF set, then 

assuming that, if recall 
fails, then the PSF set will be sufficiently different in the second HFE, and thus there will be a lower dependency 
effect due to CRD. The probability of recall in Equation (5) is therefore analogous to the probability of 
experiencing the same set of PSFs due to the same cue.  

The effect of CRD between two HFEs must therefore be modified by the probability of recalling the PSF set 
associated with the specific cue, and so the calculation of CRD for the Nth HFE in a cut-set follows Equation (6).  

  (6)  

In Equation (6), the CRD metric from (Kim et al., 2023) is extended to multi-HFE cut-sets by finding the 
maximum CRD value between the HFE under consideration (N) and all antecedents. This value is then 
multiplied by the probability of recalling the PSF set initially formed in the antecedent event (i). Finally, this 
value is adjusted for recoverability using the RF feature.  



 

8. RF and CS extension 

The recovery factor (RF) and crew sameness (CS) metrics from the original method do not require 
adjustments when extending this method to multi-HFE cut-sets. These metrics modify the other dependency 
features (TRI, PTS, CRD) in the original method. The extended metrics proposed in Sections 3.1  3.3 operate 
by finding the maximum values between a single successor event (N) and all previous antecedent events. 
Accordingly, there may be cases in which different preceding events impart the maximum value for different 
dependency features; for example, HFE N may have a maximum TRI with HFE A, but a maximum PTS with 
HFE C. As a result, the RF and CS features must be accounted separately in the TRI, PTS, and CRD evaluations, 
but the calculations of RF and CS themselves do not require change.  

Therefore, it is recommended that both RF and CS be computed as described in (Kim et al., 2023) and 
incorporated into each equation for TRI, PTS, and CRD separately. The RF and CS values should be found using 
the antecedent event identified as providing the maximum value for that dependency feature. For example, if 
HFE A is identified as providing the maximum value for TRI, then the CS feature in Equation (3) is computed  
as . If HFE B is identified as providing the maximum value for CRD, then the RF and CS features in  
Equation (6) are computed as  and , respectively.  

9. ACE extension 

The additional contextual effect (ACE) feature describes how local PSF states (around a successor event) are 
altered by antecedent failures. Antecedent failures can impact the environment around future tasks, for instance 
by increasing the stress on the operators, and so indirectly affect the human error probability on those successor 
events. ACE considers the effect of an antecedent HFE on the PSF state, and uses the updated PSF states to 
modify the HEP of the successor HFE. Understanding and modelling the effects of antecedent HFEs on future 
PSF states is a complex challenge with multi-HFE cut-
PSF states are often PSF-specific, a robust treatment of extending ACE is beyond the scope of this paper. Such 
an extension would require robust causal modelling rooted in a firm understanding of PSF mechanics. This is 
still an area of active research.  

10. Final dependency calculation 

Taking into account the extensions made to the dependency features in Sections 3.1  3.5, the final equation 
for the conditional HEP of an HFE can be found by combining the new feature equations in the same fashion as 
Equation (1). Thus, the conditional HEP based on all previous antecedent events in the cut-set can be found 
through Equation (7):  

  

  (7)  

 
  

11. Impact and discussion 

This work aims to provide actionable recommendations for extending a novel dependency assessment method 
to scenarios with more than two HFEs in a cut-set. This work takes a conservative approach by computing the 
maximum values of multiple dependency features. However, this approach also provides a holistic view of the 
dependencies between all antecedent events and the successor event. Investigating the dependencies between the 
multiple HFEs in a cut-set may also provide important qualitative information that can be used to mitigate the 
dependency and reduce HEPs.  

HRA is both a qualitative and quantitative approach to system safety, and it is important to recognize the 
values provided to the system by thoroughly performing both pieces. This paper addresses the quantitative 
assessment of conditional HEPs based on a number of dependency features, updating the equations to account 
for the presence of multiple antecedent events. However, there is limited extension of the qualitative aspects of 



 

this approach. While the conservative method is proposed herein, taking the maximum value of each dependency 
feature, a more nuanced approach would be appropriate to enforce realism in the assessment. However, in the 
absence of a nuanced understanding of dependency in HRA, it is appropriate to take a balanced, yet conservative 
approach such as that proposed herein.  

The dependency assessment method developed in (Kim et al., 2023) and extended herein leverages the most 
current available theoretical and empirical basis for HRA. This is a significant improvement over previous 

corresponding equations divorced from both empirical and theoretical foundations. This method therefore 
represents the state-of-the-art in empirically-based HRA dependency assessment. This dependency assessment 
method balances a rigorous basis in empirical evidence and cognitive theory with a conservative, piece-wise 
maximization approach.  

Developing such a more nuanced approach to dependency will require additional research into the 
mechanisms and dynamics that underlie dependency in HRA. Some of this work is already underway around the 
world, and some of this work needs to begin. Section 5 addresses research that is needed to continue developing 
our understanding of dependency in HRA.  

12. Future research needs  

This work has illuminated several interesting areas that will need to be addressed through future research. 
HRA, and dependency in particular, has been the subject of an increasingly robust research effort across the 
world in recent years. In the absence of a scientific consensus regarding many aspects of HRA dependency, it is 
imperative to continue research in this broad field. Within the area of HRA dependency, there are several key 
aspects that require more research to tackle the remaining uncertainties. Some of these areas were highlighted in 
this paper, while others, notably related to the foundations of the field, are discussed in (Mortenson et al., 2023; 
Paglioni and Groth, 2022).  

HRA as a field is generally in need of advancement and research on two fronts: 1) foundational technical 
knowledge and 2) implementation. The remaining uncertainties related to foundational technical knowledge are 
well enumerated in other works. Here, we will expound on only those related to the work presented in this paper. 
The remaining uncertainties related to implementation, i.e., of HRA methods and tools, are less studied, but just 
as important for HRA as critical to ensuring system safety.  

The avenues for future research uncovered by this work are mainly focused on understanding the dynamics of 
human cognition and the connection between human cognition, action, and system responses. For example, the 

internal representation of the system and its functioning developed 
over years of experience and training, are poorly understood in regards to their effect on procedural performance 
and dependency. For example, the assessment of CRD in this work assumes that PSF sets associated with 
specific cues decay in the absence of the cue, so that cue recognition dependency decreases with the number of 
events between subsequent appearances of the cue. However, this is based on psychological research on single 
item recall, not on human reliability. A robust understanding of this effect, if it exists, should incorporate new 
research that focuses on the idea of a mental model, rather than item recall.  

Further research on the foundations of HRA, specifically regarding dependency, should seek data-informed 
causal models of dependency such as those presented in (Kim et al., 2023; Paglioni and Groth, 2023a). These 
papers focus on developing data-informed models for assessing and understanding dependency, respectively.   

This work also identified potential issues regarding the pragmatic implementation of this method as an end-
user tool. Specifically, the complexity of Equation (7) is likely to limit the utility of this method in the field, 
where the general preference is to lessen the workload on analysts where possible. While this method could be 
incorporated into a software tool to ease implementation, the complexity of the underlying mathematics would 
make it difficult to trace and check work. This trade off between realism and ease of use is not unique to HRA, 
but is especially salient for the field in light of its intrinsic complexity. Thus, future research should investigate 
how this method could be best translated to a usable software to support implementation.  

There are many challenges to HRA that exist contemporaneously with an enormous multidisciplinary effort 
working to find solutions. To fully realize the power of these different research efforts, there should be renewed 
interest in sharing not only findings, but the data that was gathered at various experimental facilities. Such data 
sharing efforts had been discussed in early 2020. The renewed interest in this subject has coincided with the 
increasing availability of tools to support online meetings and sensitive data sharing. As such, it is important to 
renew discussions regarding collaboration and data sharing.  
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