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Abstract

This paper updates aspects of the dependency assessment method developed previously by the Korea Atomic Energy
Research Institute (KAERI) and demonstrated for the EMBRACE HRA. This method represents a novel approach to
modeling and quantifying dependency between human failure events (HFEs), predicated on shared temporal resources (TRI)
and similarities in cue recognition (CRD) and procedure transition (PTS). However, the current version of this method is
designed to assess dependency between two HFEs only. The possibility of multiple (i.e., more than two) dependent HFEsin a
cut-set requires a corresponding update to the dependency assessment method to ensure that realism and conservatism are
properly retained when extending this methodology to multi-HFE cut-sets. Accordingly, this paper proposes an updated
methodology to efficiently compute the dependency between three or more HFEs, that is firmly rooted in both theory and
empirical data.
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1. Introduction

Dependency assessment in human reliability analysis (HRA) has been the subject of a sizeable body of
research in recent years (Kim et al., 2015; Mortenson and Boring, 2021; Paglioni and Groth, 2022). Briefly,
dependencies are the causal relationships between the modeling elements in HRA that can ater the human error
probabilities (HEPs) used in probabilistic risk assessments (PRAs) (Paglioni and Groth, 2021). Critically, recent
work has stressed the importance of moving beyond the dependency framework set up in the Technique for
Human Error Rate Prediction (THERP), one of the prototypicall HRA methods developed through the 1980s
(Swain and Guttmann, 1983). This is an important development because current HRA dependency assessment
methods are largely not rooted in empirical data or literature, instead relying upon the rule-based method and
equations developed in THERP. Recent work at the Korea Atomic Energy Research Ingtitute (KAERI) has
leveraged the availability of HRA data to create an empirically-based dependency assessment methodology, a
significant step forward for realismin HRA (Kim et a., 2023). This development coincides with recent work at
Idaho National Laboratories (INL) that identified dependency signatures in empirical data (Boring et a., 2023)
and at the University of Maryland that developed a causal model structure for HRA dependency informed by
data (Paglioni and Groth, 2023a, 2023b).

Focusing on empirical data for developing HRA dependency assessment methods has the distinct advantage
of predicating these analyses on observed data, in addition to literature, and improving the realism of HRA
dependency assessments. However, the recent method developed at KAERI considers dependency only between
two HFEs in a cut-set. This stands in contrast to applications of HRA in the nuclear power industry, where
multiple-HFE cut-sets (i.e., those cut-sets with three or more HFES present) are common. However, the results
obtained with the KAERI method are promising, and therefore extending this method to accommodate more
HFEs is important to ensuring that such a method is useable in industry. Accordingly, this paper presents
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recommendations for updating the KAERI dependency assessment method to be applicable to multiple-HFE cut-
sets.

The remainder of this paper is structured as follows. Note that there is only limited background information
provided on HRA dependency. This has been well-documented in recent research, including in (Boring et a.,
2021; Kimet a., 2023). Instead, this paper will focus on the recently-developed KAERI dependency assessment
method and the recommendations for extending the method. Section 2 reviews the current state of the
dependency assessment method and the different factors used within. Section 3 presents the recommendations
for extending the method to multiple-HFE cut-sets. Section 4 discusses the impacts of this method on HRA
practice, and Section 5 concludes with a discussion of future research needs to understand dependency in HRA.

2. Background

The HRA dependency assessment method under study was developed by KAERI in 2023, and first
implemented within the EMBRACE HRA method, also developed by KAERI (Kim et al., 2019, 2020, 2021).
This method incorporates the latest work on HRA dependency and how dependency exists within a system.
Critically, this method incorporates four aspects of human performance that are causaly important to
dependency in HRA, which are briefly explained below (Kim et al., 2023):

o Feashility impact: an antecedent human action may directly influence the feasibility of future human
actions, for example by damaging equipment required for successor tasks. This will therefore directly alter
the HEP for successor tasks.

e PSF impact: an antecedent human action may cause a change in the performance shaping factors (PSFs)
that define the situation (e.g., local PSF states) in which successor tasks will take place. This relationship,
similar to the situational dependency from (Paglioni and Groth, 2023a), will indirectly affect the HEP for
successor tasks by modifying the PSF states surrounding performance.

¢ Resource impact: two human actions may share temporal or spatial resources, in which case an antecedent
HFE could affect the resources available for successor tasks. This relationship, similar to the resource-
sharing dependency from (Kichline et al., 2021; Xing et a., 2021), will indirectly affect the HEP for
successor tasks by modifying the resources available for performance.

e Mental model impact: two human actions may share aspects of a mental model, the internal model people
make of a scenario based on their experience, knowledge, and training. As aresult, a mental model shared
between two human actions will enforce a dependency similar to the common context dependency
described in (Paglioni and Groth, 2023a). Mental models are difficult to represent, and the effects on
dependency are still being understood. The authors discuss the incorporation of mental models in
dependency in (Kim et al., 2024).

The dependency method incorporates these causal aspects by predicating the computation of conditional
human error probabilities (cHEPs) on six factors and using empirical data, expert opinion, and similarity
measures to quantify the effects of dependency. Currently, the method is designed for use with positive, HFE-
level dependencies, e.g., it does not include interdependencies between PSFs, major crew functions (MCFs), or
other lower-level causa modelling elements in HRA. This is in accordance with typical use-cases of HRA,
which are focused at the HFE level to facilitate easy incorporation into PRAs. Furthermore, this method assumes
(appropriately) that cases in which the antecedent HFE directly affects the feasibility of successor tasks are
modelled separately in the fault trees or event trees of the parent PRA. Therefore, the feasibility impact above is
not included in the dependency assessment discussed herein. Finaly, this method is employed when there are
two HFEs in the same accident sequence minimal cut-set model.

Equation (1) defines the computation of the conditional probability of a successor HFE, B, given the
occurrence of an antecedent HFE, A, based on six dependency features which are explained in Section 2.1. For a
full discussion on this method and the dependency features, see (Kim et a., 2023).

HEP(B|A) = [TRI + {PTS + CRD} - RF] - CS + HEP, - ACEj 1)

3. Dependency features

Equation (1) relies on six dependency features that define causal relationships between the antecedent event,
A, and the successor HFE, B (event is used here instead of HFE, because there are cases in which the antecedent
event A istechnically a success, but till enforces a dependency to the subsequent event/HFE B). Briefly, these
six dependency features are:
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e Temporal resource insufficiency (TRI): the probability that the successor event is temporally infeasible
within the time availabl e following the antecedent event. TRI is computed per Equation (2).

TRI=1—® (i -In {M}) @

Trpena~TrBstart

In Equation (2), Ty, is the endpoint of the availability window for the successor HFE, B, and T, , is the

endpoint of the required time to perform the antecedent event A. The interval (T,B’en o TTB,sturt) isthe length of
time required for performance of successor event B. The ¢ term is the standard deviation of lognormally-
distributed performance times.

e Procedure transition similarity (PTS): the similarity between procedural flows in both events A and B. This
is computed with the Smith-Waterman algorithm to assess the alignment between procedural sequences.

o Cue recognition dependency (CRD): the HEP for a successor event will increase if performance of that
event relies on the same cue (information from procedure or instrument) as a previously-failed event. The
reasoning is that, in the absence of new cues, there is no chance for the operators to adjust their mental
model or gain new information following a failure, and thus a successor failure is more likely. Two events
sharing the same cue have a CRD value of 0.5; the CRD is 0.0 if there are new cues available for the
successor event.

o Recovery factor (RF): if the time available for a successor event is sufficiently long, i.e., longer than the
sum of the time available for the antecedent event and the 95 percentile of the time required for the
successor event, there is a possibility of recovering the failure on the successor event. Empirically,
recovery failure probabilities are on the order of 0.5; thus, RF = 0.5 when recovery is possible, and 1.0
otherwise.

o Crew sameness (CS): The sameness of the crew impacts whether the preceding dependency features (TRI,
PTS, CRD) are impactful between two HFEs. If the crew is the same between both HFES, these features
are considered in dependency (CS = 1.0). If the crew is different between both HFEs (e.g., due to shift
change or performance location change), then these factors are disregarded (CS = 0.0).

e Additional contextual effect (ACE): additional contextual effects are considered when the PSF states for
the successor HFE are expected to change from the PSF states assumed in the calculation of the individual
HEP (HE Pg). The PSF changes resulting from HFE A occurring are considered, and used to adjust the
“baseline” HEP for the successor event to account for these changes.

The dependency assessment method was tested on two case studies in the nuclear power operations context,
which revealed that this method is similar in computational intensity to the EPRI dependency assessment method
(EPRI, 2016) and arrives at similar or lower HEP values. Therefore, the dependency assessment method
addresses the hyper-conservatism present in many HRA dependency assessments (Boring et al., 2021). However,
as mentioned previously, the method is designed for use with two HFEs, and is thus not currently applicable to
cut-sets featuring more than two HFES. To rectify this, we provide some recommendations for extending this
methodol ogy to three or more HFEs in Section 3.

4. Recommendations

Perhaps the simplest way to extend the current method to three or more HFES would be to simply perform
pair-wise assessments between all the HFEs in a cut-set and use the maximum value to ensure appropriate
conservatism. For instance, in a cut-set containing N HFES, this would involve computing HEP (j|i) for all HFEs
i,j €{1,..,N},j>1i, and then setting HEP(j|i) = max{HEP(j|i)V j > i}. However, doing this neglects
scenarios in which a successor event is dependent on multiple antecedent events, for example an event N that
shares a crew with event N-1, temporal resources with event N-2, cues with event N-3, etc. Accordingly, arobust
treatment of multi-HFE cut-sets requires assessing the individua dependency features among the HFESs, rather
than assessing the total dependency quantification.

Accordingly, this section will review each dependency feature used in the current method, and focus on how
that feature could be extended to consider three or more HFEs. These recommendations are meant to promote
the incorporation of this dependency assessment method into current HRA assessments. These recommendations
have been designed to adjust the validated method with minimal revision to the underlying mathematics in
Equation (1). That is, this work does not recommend changes to the theoretical or empirical bases of the method;
such recommendations would require significant research into the mechanics of each dependency feature.
Research into the theoretical bases of HRA and dependency is ongoing among several research groups.
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Sections 4 and 5 will discuss future research areas that should be explored to better understand dependency in
HRA and inform the next generation of dependency assessment methods.

5. Temporal resourceinsufficiency (TRI) extension

The current calculation of the TRI feature is presented in Equation (2), and captures the relationship between
the time required for the successor event (i.e., the event for which dependency is being computed) and the
antecedent HFE. However, when extending to cut-sets featuring more than two HFEs, it is clear that the
temporal resources shared by all antecedent events must be considered. For example, if the successor event isthe
Nth HFE in a cut-set, there are N-1 antecedent events that require time for performance, and which thus will
impact the time available for performing the Nth event. As a result, the TRI feature for the Nth HFE must
consider the time interval s used in the preceding events.

Accordingly, it is recommended that the TRI feature for the Nth HFE in a cut-set be computed according to
Equation (3), which considers the timeintervals required for performing the preceding events.

TRIN — [1 - (ln (TaN,end_ 2:{\J=_11(T7i,emi_Tri,sta‘rl:)) . o.—l)] . CSi,N (3)

TTN,end _TrN,start

In Equation (3), note that theterm T, , ., the endpoint of the required time interval for the single antecedent
event A, in the numerator of the lognormal function from Equation (2) has been replaced by a sum. Specificaly,
Equation (3) computes the sum of the time intervals required for all antecedent events. Therefore, Equation (3)
considers that the time available for the successor event N may be strained by multiple antecedent events. That
is, the time required to perform the antecedent events will reduce the time available to perform the successor
event, represented by T,

N,end’

6. Proceduretransition smilarity (PTS) extension

The PTS feature quantifies the similarity in procedural sequences between two events using the Smith-
Waterman agorithm. This algorithm computes the similarity in the text of procedures, and the PTS metric is
based on the assumption that similar procedures will trigger similar mental models and modes of performance.
Therefore, if a successor event has a similar procedure flow as a previous failure, it is more likely that the
successor event will also be failed. It stands to reason that this effect is not limited to subsequent events, but may
exist across multiple events and so it is important to account for PTS across all HFEsin a cut-set.

In order to extend PTS to al HFEs in a cut-set (from the initial consideration of two HFESs), it is
recommended that a similar pairwise calculation to the TRI extension be conducted. This will capture the
procedure transition similarity between al HFEs in a cut-set. Thus, for a given HFE N, the PTS is computed
based on the maximum similarity between HFE N and all of the antecedent events per Equation (4).

PTSy = max;{PTS(i,N)} - RF;y - CS; n (4)

In Equation (4), the PTS computation PTS(i, N) isfound using the Smith-Waterman algorithm as before. The
maximum value of the PTS metric is taken to identify the antecedent HFE that has the biggest impact on
dependency. Then, asin the original calculation (Equation (1)), this value is modified by the recoverability and
crew similarity (RF and CS, respectively) between the antecedent HFE and the successor HFE under study.

7. CRD Extension

The CRD feature quantifies the dependency enforced between two events that share the same cue, or
“triggering” information. Cues can be generated by procedures (e.g., a step indicating a transition) and/or
instruments (e.g., avisual check revealing an anomalous reading). Extending the CRD feature to multi-HFE cut-
sets requires similarly discounting the cue similarity based on the time elapsed between the first appearance of
the cue (prompting the antecedent event) and the subsequent appearance (or use) of the cue (prompting the
successor event). Thus, a similar weighting procedure as in Equation (4) should be applied for the reduction in
cue recognition due to intervening events. Note that the memory decay model introduced herein assumes that the
mental model associated with a cue decays over time in the same manner that the PSF set decays. This effect has
not been fully supported by data, and so should be investigated thoroughly via future research.

180



The dynamics of memory are still being unravelled, although there is some evidence from psychological
studies that points to a passive dissipation of the “task set” during the time intervening a prior response and the
appearance of anew cue (Meiran et al., 2000). These experiments indicated a reduction in “switching cost” (i.e.,
the performance decrease caused by rapidly switching tasks) associated with longer intervals between the
previous task and the cue. Further, these experiments found that the “task set” (analogous to internal, cognitive
PSFs and biases) employed during Task N-1 dissipates rapidly during the performance of Task N . Therefore, it
stands to reason that the cue recognition dependency between two events decreases with the number of events
that intervene. Another set of experiments on positional effect in recall for lists of various lengths indicates that
cues recall decreases with the time between appearance and retrieval of the cue (Brown et al., 2007).

The evidence from psychological experiments into free recall memory and cue retrieval indicate that the cue
retrieval probability declines with time between appearance and retrieval (Brown et a., 2007; Meiran et al.,
2000). Further the “task set” imposed by a cue response, that is the set of cognitive PSFs that might be shared
between two HFEs prompted by similar cues, israpidly dissipated after the appearance of a new, dissmilar cue
(Meiran et a., 2000). This is to say that the “memory” of a cue, stored in the PSFs, will dissipate between two
HFEs and thus decrease the effect of CRD. The decay of higher-level task sets, e.g., the set of PSF states, has
been disputed, although the decay theory remains central to current models of cognitive control (Grange and
Cross, 2015). Accordingly, it appears appropriate to base the decay of CRD on this decay theory.

Therefore, we propose that CRD be weighted according to the number of intervening events, in accordance
with evidence presented in (Brown et a., 2007), which indicates the probability of recall for the first itemin a
list of varying length is a function of list length, as shown in Table 1. Here, it is assumed that the appearance of a
cue, and therefore the presence of the specific PSF set associated with the cue, is analogous to the first item in a
list of items to be recalled. For example, if a cue appears in HFE A and then again in HFE F, recalling the cue
(and corresponding PSF set) requires recalling the first item in alist of five items.

Table 1. Recall probability as function of list length (Brown et a., 2007)

Intervening Events Recall probability (1% item)
9 0.7

14 0.6

19* 04

29 0.25

39 0.2

* Average of two experiments

Using least squares regression allows the above data to be fit to an exponential decay model for recall
probability. The probability of recal for the first itemin alist isrelated to the intervening number of tasks (x) by
Equation (5).

Pr(recall) = 1.015 - =004 o

This may appear to treat the cue itself as an item to be recalled, rather than a prompt to a cognitive process.
However, operating under the assumption that a cue prompts the creation (or retrieval) of a specific PSF set, then
it is the PSF set that serves as a “recalled object,” prompted by the cue. We are therefore assuming thet, if recall
fails, then the PSF set will be sufficiently different in the second HFE, and thus there will be alower dependency
effect due to CRD. The probability of recall in Equation (5) is therefore analogous to the probability of
experiencing the same set of PSFs due to the same cue.

The effect of CRD between two HFEs must therefore be modified by the probability of recalling the PSF set
associated with the specific cue, and so the calculation of CRD for the Nth HFE in a cut-set follows Equation (6).

CRDy = max;{CRD(i,N) - 1.015 - e 00 W-D}. RF, . CS; (6)

In Equation (6), the CRD metric from (Kim et a., 2023) is extended to multi-HFE cut-sets by finding the
maximum CRD value between the HFE under consideration (N) and all antecedents. This value is then
multiplied by the probability of recalling the PSF set initially formed in the antecedent event (i). Finaly, this
valueis adjusted for recoverability using the RF feature.
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8. RF and CS extension

The recovery factor (RF) and crew sameness (CS) metrics from the origina method do not require
adjustments when extending this method to multi-HFE cut-sets. These metrics modify the other dependency
features (TRI, PTS, CRD) in the origina method. The extended metrics proposed in Sections 3.1 — 3.3 operate
by finding the maximum values between a single successor event (N) and all previous antecedent events.
Accordingly, there may be cases in which different preceding events impart the maximum value for different
dependency features; for example, HFE N may have a maximum TRI with HFE A, but a maximum PTS with
HFE C. Asaresult, the RF and CS features must be accounted separately in the TRI, PTS, and CRD evaluations,
but the calculations of RF and CS themselves do not require change.

Therefore, it is recommended that both RF and CS be computed as described in (Kim et al., 2023) and
incorporated into each equation for TRI, PTS, and CRD separately. The RF and CS values should be found using
the antecedent event identified as providing the maximum value for that dependency feature. For example, if
HFE A isidentified as providing the maximum vaue for TRI, then the CS feature in Equation (3) is computed
as CS,y. If HFE B is identified as providing the maximum value for CRD, then the RF and CS features in
Equation (6) are computed as RFp yy and CSp y, respectively.

9. ACE extension

The additional contextual effect (ACE) feature describes how local PSF states (around a successor event) are
altered by antecedent failures. Antecedent failures can impact the environment around future tasks, for instance
by increasing the stress on the operators, and so indirectly affect the human error probability on those successor
events. ACE considers the effect of an antecedent HFE on the PSF state, and uses the updated PSF states to
modify the HEP of the successor HFE. Understanding and modelling the effects of antecedent HFEs on future
PSF states is a complex challenge with multi-HFE cut-sets. Because the mechanics of an HFE’s influence on
PSF states are often PSF-specific, a robust trestment of extending ACE is beyond the scope of this paper. Such
an extension would require robust causal modelling rooted in a firm understanding of PSF mechanics. This is
still an area of active research.

10. Final dependency calculation

Taking into account the extensions made to the dependency features in Sections 3.1 — 3.5, the final equation
for the conditional HEP of an HFE can be found by combining the new feature equations in the same fashion as
Equation (1). Thus, the conditional HEP based on all previous antecedent events in the cut-set can be found
through Equation (7):

T, —yN-Yp. 1
HEP(Nli € {1,..,N—1}) = [1 _ (m( anena™ 2 (Triena r"““”)) . 0'1)] CSin

TrNend TN start
+ max,-{PTS(j, N)}- RFjy - CSjn @)

+ max, {CRD(k,N) - 1.015 - e 004*WN=K)} . RE, \ . CSp
+ ACEy - HEPy

11. Impact and discussion

This work aims to provide actionable recommendations for extending a novel dependency assessment method
to scenarios with more than two HFEs in a cut-set. This work takes a conservative approach by computing the
maximum values of multiple dependency features. However, this approach also provides a holistic view of the
dependencies between all antecedent events and the successor event. Investigating the dependencies between the
multiple HFEs in a cut-set may also provide important qualitative information that can be used to mitigate the
dependency and reduce HEPs.

HRA is both a qudlitative and quantitative approach to system safety, and it is important to recognize the
values provided to the system by thoroughly performing both pieces. This paper addresses the quantitative
assessment of conditional HEPs based on a number of dependency features, updating the equations to account
for the presence of multiple antecedent events. However, there is limited extension of the qualitative aspects of
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this approach. While the conservative method is proposed herein, taking the maximum value of each dependency
feature, a more nuanced approach would be appropriate to enforce realism in the assessment. However, in the
absence of anuanced understanding of dependency in HRA, it is appropriate to take a balanced, yet conservative
approach such asthat proposed herein.

The dependency assessment method developed in (Kim et a., 2023) and extended herein leverages the most
current available theoretical and empirical basis for HRA. This is a significant improvement over previous
dependency assessment methods based on unvalidated notions of dependency “levels” between HFEs and
corresponding equations divorced from both empirical and theoretical foundations. This method therefore
represents the state-of-the-art in empirically-based HRA dependency assessment. This dependency assessment
method balances a rigorous basis in empirical evidence and cognitive theory with a conservative, piece-wise
maximization approach.

Developing such a more nuanced approach to dependency will require additional research into the
mechanisms and dynamics that underlie dependency in HRA. Some of this work is already underway around the
world, and some of this work needs to begin. Section 5 addresses research that is needed to continue developing
our understanding of dependency in HRA.

12. Future resear ch needs

This work has illuminated several interesting areas that will need to be addressed through future research.
HRA, and dependency in particular, has been the subject of an increasingly robust research effort across the
world in recent years. In the absence of a scientific consensus regarding many aspects of HRA dependency, it is
imperative to continue research in this broad field. Within the area of HRA dependency, there are severa key
aspects that require more research to tackle the remaining uncertainties. Some of these areas were highlighted in
this paper, while others, notably related to the foundations of the field, are discussed in (Mortenson et a., 2023;
Paglioni and Groth, 2022).

HRA as afield is generally in need of advancement and research on two fronts: 1) foundational technical
knowledge and 2) implementation. The remaining uncertainties related to foundational technical knowledge are
well enumerated in other works. Here, we will expound on only those related to the work presented in this paper.
The remaining uncertainties related to implementation, i.e., of HRA methods and tools, are less studied, but just
asimportant for HRA as critical to ensuring system safety.

The avenues for future research uncovered by this work are mainly focused on understanding the dynamics of
human cognition and the connection between human cognition, action, and system responses. For example, the
temporal mechanics of “mental models,” the internal representation of the system and its functioning developed
over years of experience and training, are poorly understood in regards to their effect on procedural performance
and dependency. For example, the assessment of CRD in this work assumes that PSF sets associated with
specific cues decay in the absence of the cue, so that cue recognition dependency decreases with the number of
events between subsequent appearances of the cue. However, this is based on psychological research on single
item recall, not on human reliability. A robust understanding of this effect, if it exists, should incorporate new
research that focuses on the idea of a mental model, rather than item recall.

Further research on the foundations of HRA, specificaly regarding dependency, should seek data-informed
causal models of dependency such as those presented in (Kim et al., 2023; Paglioni and Groth, 2023a). These
papers focus on developing data-informed models for ng and understanding dependency, respectively.

This work also identified potential issues regarding the pragmatic implementation of this method as an end-
user tool. Specifically, the complexity of Equation (7) is likely to limit the utility of this method in the field,
where the general preference is to lessen the workload on analysts where possible. While this method could be
incorporated into a software tool to ease implementation, the complexity of the underlying mathematics would
make it difficult to trace and check work. This trade off between realism and ease of use is not unique to HRA,
but is especially salient for the field in light of its intrinsic complexity. Thus, future research should investigate
how this method could be best translated to a usable software to support implementation.

There are many challenges to HRA that exist contemporaneously with an enormous multidisciplinary effort
working to find solutions. To fully realize the power of these different research efforts, there should be renewed
interest in sharing not only findings, but the data that was gathered at various experimental facilities. Such data
sharing efforts had been discussed in early 2020. The renewed interest in this subject has coincided with the
increasing availability of tools to support online meetings and sensitive data sharing. As such, it is important to
renew discussions regarding collaboration and data sharing.
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