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Abstract 

In this paper, an innovative model called evidential reasoning rule with dependent evidence (ERR-DE) is proposed for the risk 
assessment of complex systems under uncertainties. A general risk assessment indicator system is established, and the risk 
indicators are modeled and described as evidence under the discernment of framework (FoD). The evidence is unified by the 
transformation matrix, and the evidence reliability and dependence index of evidence are explicitly measured. The ERR-DE 
model forms a multi-information fusion framework, where multiple pieces of evidence with different weights, reliabilities and 
dependence indexes are aggregated to establish the relationship between risk indicators and system risk. A parameter 
optimization model is constructed, where all subjective evidential parameters can be learned through the idea of maximizing 
expectations. The proposed model is applied to assess the risk of a laser gyroscope. 
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1. Introduction 

Risk assessment aims to quantitatively assess the possible degree of impact or loss caused by a risk event before 
or after the event, which is of great significance (Kuzior et al., 2023) (Deng et al., 2023.). Recent years have 
witnessed rapid developments and applications of risk assessment in different fields, such as aeronautics and 
aerospace, critical infrastructure, industrial automation and control, etc. 

Existing risk assessment methods can be divided into three categories, involving the knowledge-based method, 
the data-driven method, and the hybrid information-based method. The knowledge-based method directly 
establishes a systematic risk assessment model through mechanism analysis and expert knowledge, which has 
strong transparency and interpretability, including the analytic hierarchy process method, Petri net, Fault tree, etc. 
However, when the system mechanism is complex, it is difficult to obtain the expert knowledge and the assessment 
result may have strong subjective uncertainties, which is not conducive to improving the assessment accuracy. The 
data-driven method does not require precise acquisition of the analytical model of the system, and a risk assessment 
model can be established based on statistical data, including artificial neural network, TOPSIS method, deep 
learning, etc. However, this method needs to acquire accurate data and relies on large samples, which lacks 
interpretability and traceability. In comparison, the hybrid information-based method can combine qualitative 
knowledge and quantitative data to effectively assess the risk level of complex systems using small samples, 
including Bayesian network, fuzzy comprehensive evaluation, belief rule base, evidential reasoning rule (ERR). 
This method provides a sound idea for the risk assessment of complex systems. 

As a typical hybrid information-based method, the ERR forms a generalized probabilistic reasoning scheme to 
achieve multi-source infor -Shafer rule (Yang 
and Xu, 2013). It constructs a so-called discernment of framework (FoD) to model various uncertainties, under 
which a piece of evidence can be described as the belief distribution. By using the ERR, the system inputs can be 
transformed to multiple evidence with weight and reliability, which can be aggregated to build a bridge between 
system inputs and output. With the advancement of evidence theory, the ERR has been widely applied in the risk 
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assessment of complex systems (Gizem et al. 2023). In the ERR, however, the FoD of evidence should strictly 
correspond to the FoD of reasoning results. Thus, when assessing the system risk, all risk indicators and the risk 
assessment result should be limited in the same FoD. This is incredibly difficult since different experts can provide 
different types and quantities of assessment grades according to the system design principle and standard. Besides, 
the ERR requires all the evidence to be independent of each other from theoretical aspect, which tends to be 
idealized due to the coupling of system structure. Even though the maximum likelihood evidential reasoning 
(MAKER) framework has been proposed to aggregate interdependent evidence, it requires joint probabilities and 
marginal probabilities under all combinations, resulting in exponential computational complexity (Yang and Xu, 
2017) (Zhang et al. 2023). Most importantly, with the increase of the number of risk indicators, experts will find 
themselves in a dilemma to accurately give all evidential parameters due to incomplete or limited knowledge. This 
can greatly increase the subjective uncertainty of the risk assessment. 

Based on the above analysis, the paper aims to introduce a new risk assessment model for complex systems, 
referred to as evidential reasoning rule with dependent evidence (ERR-DE). The main contents are as follows: 

(1) The rule/utility-based equivalence transformation technique is used to acquire evidence, and the evidence 
unification method is proposed based on the concept of transformation matrix. 

(2) To better express the subjective judgment and personal preferences of experts, the evidence weight is 
described in interval form and further optimized. A calculation method of evidence reliability is proposed based 
on static and dynamic reliability, and a discounting factor is defined. 

(3) A calculation method of dependence index between evidence is proposed, and the relative total dependence 
coefficient (RTDC) is defined using the distance correlation method. 

(4) A risk assessment model called ERR-DE is proposed to aggregate all the evidence information, where the 
risk probability and the risk degree are used to measure the system risk from discrete and continuous aspects,  
respectively. 

(5) To alleviate the subjective uncertainty brought by experts, a parameter optimization model is constructed, 
which is conducive to improving the risk assessment accuracy. 

(6) The effectiveness of ERR-DE model is illustrated and verified by a case study. 

2. Proposed risk assessment model 

As for a certain system, the risk degree can be measured by the so-called risk indicators, and the corresponding 
observation data can be monitored by sensors. Suppose there are  risk indicators denoted by , which 
can be monitored by  different sensors. Then, a typical risk assessment indicator system can be constructed as 
Figure 1. 

System Risk

x1 x2 xL

x1,1 x1,2 x1, m(1) xL, 1 xL, 2

Overall indicator

Risk indicator

Sub indicator xL, m(L)  

Fig. 1. General risk assessment indicator system. 

In Figure 1, the number of sub indicators as  can be further refined according to the actual situation, where 
 and  depends on . Within time interval , the observation data matrix of indicator  at time 

instant  can be represented by . Each indicator can provide a 
piece of evidence at , denoted by . Correspondingly, the evidence weight and evidence reliability can be 
denoted by  and  respectively, . The evidence reliability is time-varying, consisting of 
static reliability  and dynamic reliability . The dependence index between  and all evidence is . 
Thus, the ERR-DE-based risk assessment model can be constructed. 

2.1. Evidence acquisition method and unification method 

Suppose the FoD of risk indicator  is , where  is the th risk grade of , and 
 and .  is related to . The referential value of  is . If  is a benefit indicator, there 

is . If  is a cost indicator, there is . Suppose the observation 
data of  at time instant  is . Without loss of generality, suppose , where 

. The rule/utility-based equivalence transformation technique can be used to acquire evidence (Yang, 
2001), shown as follows: 
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;  and . (3) 

In the above equations, ,  and  are belied degrees that  is assessed to risk grade , 
 and  respectively. Obviously, there is . Based on the above method, a piece of evidence 

can be profiled by the following belief distribution: 

 (4) 

Suppose the FoD of risk assessment result is , and a piece of evidence under  can be 
profiled by: 

 (5) 

where  is the belief degree to risk grade . As mentioned in Section 1, the FoD of evidence may differ from 
the FoD of result. This means that  is not completely equivalent to  in terms of the number and type of 
assessment grades. To unify different FoDs, the concept of transformation matrix is introduced to establish the 
mapping relationship between  and , shown as follows: 

 (6) 

where  is the transformation matrix with a dimension of . Each row of  can be denoted by an -
.   is , THEN , with 

 and  are given by experts. 
Suppose the belief degree matrix of  is , and the belief degree matrix of  is 

. According to (6), we have 

 (7) 

Based on the above analysis, all evidence can be unified to the same FoD as . To better understand the 
transformation matrix, here is an example of human health risk screening. Suppose the health level of a human is 

e FoD of risk assessment result 
can be denoted by . The health risk can be measured by two indicators as 
body temperature and blood pressure. According to relevant inspection standards
provides a piece of evidence under 
under . As such, the FoD of evidence is different from the FoD 
of assessment results. To effectively synthesize two pieces of evidence, the transformation matrix should be used 
to establish the mapping relationship between ,  and . In summary, the transformation matrix serves as a set 

- consistency in the assessment framework. 

2.2. Calculation methods of evidence weight and reliability 

Since different experts may assign different weights to a risk indicator, to effectively deal with such subjective 
uncertainty and fully leverage the role of experts in empowerment, the interval is employed to describe the 
evidence weight. For example, if there are  experts, denoted by , assigning different evidence 
weights as  to , all weights can be arranged in ascending order. Without loss of generality, 
suppose there is . The interval weight of  can be given by  with 
the maximum and minimum weights deleted. 

As the observation data of risk indicators can be influenced by environmental noises, the evidence reliability is 
introduced to measure the data quality. In the context of sensor, the evidence reliability is composed of static 
reliability and dynamic reliability of sensor (Tang et al. 2022). The static reliability  is an objective attribute of 
sensor, which a fixed value. It can be determined by the factory parameters of sensor or assesed by experts (Fan 
and Zuo, 2006). In comparison, the dynamic reliability  is a subjective attribute of sensor, which can be 
obtained by the distance-based method (Zhao et al. 2018). Thus, the evidence reliability can be calculated as 
follows: 



 

 (8) 

where  is a discounting factor, reflecting the contribution of static reliability and dynamic reliability to 
evidence reliability. It is normally given by experts. If , there is . If , there is . 

2.3. Calculation method of dependence index 

Affected by such factors as system structure coupling and mechanism correlation, the risk indicators may not 
be strictly independent of each other. Hence, it is necessary to consider the correlation of indicators. Due to the 
unequal reliability of different risk indicators, the evidence reliability can be used to determine the aggregation 
sequence (Yager, 2009) (Zhang et al. 2023). This indicates that the higher the reliability of an indicator is, the 
higher its aggregation sequence will be. In this paper, the dependence index of evidence is defined as RTDC using 
the distance correlation method. 

As for two pieces of evidence  and  at time instant , and the evidence reliabilities are  and  
respectively. The relative aggregation sequence  can be determined as follows: 

 (9) 

where  and  refer to the aggregation sequence of  and  respectively. 
Given two observation data matrices  and , the distance correlation coefficient of  and  can 

be calculated as follows (  et al. 2007): 

 (10) 

where  is the empirical distance covariance between  and .  and  
denote the empirical distance variance of  and  respectively. 

Without loss of generality, suppose the aggregation sequence of  is . The 
correlation matrix  can be given by: 

 (11) 

The total dependence degree of  can be calculated as follows: 

 (12) 

The dependence index between  and all evidence is , i.e., the RTDC value, which can be calculated 
as follows: 

 (13) 

 (14) 

It can be concluded from the above equations that  and the larger the value of , the stronger 
the independence between  and all evidence. If ,  is regarded as independent of other evidence. 

2.4. ERR-DE-based risk assessment model 

According to the above analysis, the ERR-DE model is proposed in this section. As for a piece of evidence 
 profiled by (5) with weight and reliability of  and , in the FoD as , the hybrid 

probability mass can be calculated as follows: 
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where  denotes the empty set.  is the hybrid weight, and .  is the power set of 
, which is composed of  subsets of . It can describe local and global ignorance in the assessment profiled by: 

 (16) 

As for two pieces of evidence  and  profiled by (4), the evidence combination based on ERR-DE can 
be expressed as: 

 (17) 

 (18) 

where  is the combined belied degree of risk grade  from  and , .  represents 
the unnormalized combined probability mass of .  and  denote hybrid probability masses of  
and  assigned to risk grades  and  respectively. 

As for  pieces of evidence , equations (17) and (18) can be recursively used  
times to generate the final risk assessment result, which can be profiled by the following belief distribution: 

 (19) 

where  is the final combined belied degree of risk grade , . Obviously, there is local and global 
ignorance in  since  is not just a single subset. Thus, it is necessary to map  to real probabilities 
of single subsets  for further assessment and decision (He et al. 2023). The calculation method is given by: 

 (20) 

where  is the risk probability that the complex system is at the risk grade  at time instant . 
Suppose the utility of  is , the expected utility of the system can be calculated as follows: 

 (21) 

where  can quantitatively measure the risk degree of system. Compared with discrete risk grades  
in ,  is a continuous variable that can illustrate the risk degree more effectively. A larger  closer to 
1 reflects a higher risk, while a lower  closer to 0 reveals a lower risk. 

It should be noted that the proposed ERR-DE model forms a nonlinear multiple information fusion scheme. 
Research on the nonlinear characteristics of ER approach can be found in (Yang and Xu, 2002). In addition, in the 
ERR-DE model, the individual risk indicators forming the overall risk indicator do not necessarily need to be 
independent in practice. 

2.5. Proposed parameter optimization model 

In the ERR-DE model, there are several parameters given by experts, including evidence weights, referential 
values of risk grades in different FoDs, and the transformation matrix. This will cause strong subjective uncertainty 
in the risk assessment result. As mentioned in Subsection 2.2, the evidence weight belongs to an interval 

, which will make  fluctuate within a certain range. Suppose the expected risk degree is , 
and the observed result is . To alleviate the subjective uncertainty of evidential parameters, a parameter 
optimization model can be established by maximizing the likelihood of expected risk degree as follows: 

 (22) 

s.t. 

 (23) 



 

where  and  denote the upper and lower bounds of evidence weight .  and  represent the upper and 
lower bounds of referential value  in initial FoDs. The goal is to minimize , and the expected risk degree  
is given based on the expert judgment. 

3. Case study 

In this section, the risk assessment of a type of laser gyroscope is conducted to show the implementation process 
of the proposed ERR-DE model. According to the mechanism analysis, the risk of laser gyroscope is mainly related 
to drift coefficient and light intensity. Thus, the risk assessment indicator system can be constructed as Figure 2. 

 
Overall indicator

Risk indicator

Risk of laser gyroscope

K0 K1 LT  

Fig. 2. Risk assessment indicator system of laser gyroscope. 

In Figure 2,  and  denote the zero-item and first-item drift coefficients of the laser gyroscope, respectively.
 is the light intensity. In the experiment, the gravitational acceleration of the experimental site is 9.8015 m/s2. 

A total of 100 sets of data are collected, as shown in Figure 3. 

 

Fig. 3. Observation data of K0, K1 and LT. 

3.1. Acquisition of evidence and determination of initial parameters 

Based on factory parameters and expert knowledge, the referential grades and referential values of risk 
indicators are listed in Table 1 and Table 2. 

Table 1. Referential grades and referential values of drift coefficients. 

Referential grade Small Medium Large 

K0  [-0.03, -0.01] [-0.01, 0.01] [0.01, 0.03] 

K1 ("/s) [ -6] [ -6, -6] [ -6 -5] 

Table 2. Referential grades and referential values of light intensity. 

Referential grade Very weak Weak Medium Strong Very Strong 

LT (V) [-4.32, -4.28] [-4.28, -4.24] [-4.24, -4.2] [-4.2, -4.16] [-4.16, -4.12] 

According to Table 1, the FoD of drift coefficients can be denoted by . The unit 
of light intensity is V in Table 2, which is the output of an A/D conversion circuit. As such, the FoD of light 
intensity can be denoted by . By using the rule/utility-
based equivalence transformation technique, all the observation data can be transformed to evidence. For example, 
in Figure 3, the observation data of  on the first day is - /h. If  and , based 
on (1)-(3), the evidence can be generated by: 



 

 (24) 

Thus, the evidence acquired from  on the first day can be profiled by: 

 (25) 

Limited by page number, the detailed results will not be presented here. To obtain the evidence weight, we 
invite 5 experts to participate in empowerment. Also, the FoD of risk assessment result is set as 

. Obviously, there is inconsistency among ,  and . Thus, the evidence in  and  
should be transformed to . The initial evidential parameters are given as follows for illustration: 

Table 3. Initial parameters of risk indicators. 

Risk indicator K0 K1 LT 

Interval weight [0.8, 0.9] [0.75, 0.85] [0.75, 0.85] 

Static reliability 0.95 0.85 0.9 

Discounting factor 0.8 

Table 4. . 

Risk grade Low Medium High 

Referential value [0, 0.4] [0.4, 0.7] [0.7, 1] 

 (26) 

As such, all evidence can be unified to the same FoD as . By using the distanced-based method, the dynamic 
reliability of each risk indicator can be calculated. Based on (8), the evidence reliability is depicted in Figure 4. 

 

Fig. 4. Reliability of risk indicators. 

Based on (9)-(14) and Figures 3-4, the significance level is set as 5%, and the RTDC value of each risk indicator 
can be obtained. It is calculated that , , . 

3.2. Parameter optimization 

Based on (22), the objective function can be established, and the constraints can be obtained from Tables 1-4. 

 (27) 

In this section, the initial values of all evidential parameters are set as the average values of corresponding 
intervals. Using the Fmincon Function in Matlab Optimization Tool, the above optimization problem can be 
solved. The optimal transformation matrices are as (28), and other optimal evidential parameters are listed in 
Tables 5-8. 



 

 (28) 

Table 5. Optimal referential values of drift coefficients. 

Referential grade Small Medium Large 

K0  -0.0230 0.0009 0.0132 

K1 ("/s) 1.9 -6 4.2 -6 9.5 -6 

Table 6. Optimal referential values of light intensity. 

Referential grade Very weak Weak Medium Strong Very Strong 

LT (V) -4.302 -4.265 -4.216 -4.185 -4.137 

Table 7. Optimal weight of risk indicators. 

Risk indicator K0 K1 LT 

Optimal weight 0.85 0.80 0.80 

Table 8. Optimal . 

Risk grade Low Medium High 

Optimal Referential value 0.0157 0.5564 0.9826 

Based on Subsection 2.4, the risk probabilities of laser gyroscope relative to different risk grades can be 
obtained using the optimized ERR-DE model, shown as Figure 5. 

 

Fig. 5. Risk probability of laser gyroscope. 

It can be seen from Figure 5 that as the number of test days increases
decreases dramatically from roughly 0.88  around 0.10, 
and the amplitude is relatively gentle
about 0.04 to 0.82. This also means that the likelihood of risks occurring with laser gyroscope is increasing. It 
should be noted that the trend of risk probability change for three risk grades is not strictly monotonically 
increasing or decreasing. The potential reason contains two aspects. On the one hand, in the process of probability 
reasoning, the risk grade corresponding to the highest risk probability is generally considered as the actual risk 
state in which the laser gyroscope is in. The overall trend Figure 5 shows that the overall severity of risks associated 
with laser gyroscopes is increasing. On the other hand, the performance degradation process of laser gyroscopes 
is not continuous. Due to the internal fault-tolerant mechanism of laser gyroscope, when the performance 
degradation reaches a certain level, there will be a slight decrease in the risk probability. However, this does not 
affect the overall trend of risk changes. 

To further reveal the overall changes in the risk degree of laser gyroscope, the risk assessment results between 
the optimized ERR-DE model and the expected result are compared, as shown in Figure 6. According to Figure 6, 



 

the mean square error (MSE) value between the optimal assessment result by ERR-DE model and the expected 
result is 0.0079. This demonstrates that the optimized ERR-DE model can well describe the changes in the risk 
degree of laser gyroscope. Overall, the risk degree increases from approximately 0.10 to 0.87. As mentioned in 
Subsection 2.4, an increase in  means an increase in risk degree, which is also consistent with Figure 5. 
Therefore, the effectiveness of the proposed ERR-DE model is validated. 

 

Fig. 6. Comparison between the ERR-DE model and the expected result. 

3.3. Comparison with classical ER approach 

In this subsection, a classical ER approach called the ERR model is used for comparison to further verify the 
effectiveness of the proposed ERR-DE model. In the ERR model, the inconsistency of FoD is not considered, and 
the dependence index of evidence is ignored. To unify the FoD of evidence, we set 

, and the referential values of  are listed in Table 9. Other parameters are consistent 
with the ERR-DE model. 

Table 9. Referential grades and referential values of light intensity in ERR scheme. 

Referential grade Weak Medium Strong 

LT (V) [-4.3, -4.25] [-4.25, -4.2] [-4.2, -4.15] 

Using the Fmincon Function in Matlab Optimization Tool, the ERR model can be optimized. The risk 
assessment results generated by different ER models are compared in Figure 7.  

 

Fig. 7. Comparison among different ER models. 

It can be seen from Figure 7 that the MSE value between the optimal assessment result by ERR model and the 
expected result is 0.0172. Compared with ERR model, the assessment accuracy of ERR-DE model increases by 



 

about 54.7%. Due to the incomplete consideration of uncertainty in ERR model, its risk assessment accuracy is 
relatively low. On the one hand, the inconsistency of FoD is not considered in the ERR model, increasing the 
uncertainty in setting initial values. On the other hand, in the ERR model, all evidence is independent of each other 
in default, which is difficult to match with reality. Hence, the above comparative study also shows the effectiveness 
of the proposed ERR-DE model. 

4. Conclusion 

In this paper, an ERR-DE-based risk assessment model for complex systems is briefly introduced with a case 
study. It constitutes a multi-source information fusion framework, which can make full use of qualitative 
knowledge and quantitative data to analyze the system risk under various uncertainties. Based on the establishment 
of a general risk assessment indicator system, all risk indicators are transformed to evidence under different FoDs. 
The transformation matrix is introduced to unify different evidence to the same FoD. The subjective and objective 
evidential parameters are considered, with the dependence index of evidence measured by RTDC. All evidence is 
aggregated by the ERR-DE model to assess the system risk, which is measured by the risk probability and the risk 
degree, respectively. Moreover, the parameter uncertainty is well alleviated by a parameter optimization model. 

In view of the achieved new results, the future work should be focused on the sensitivity analysis or robustness 
analysis of the risk assessment model. Besides, the ability of ERR-DE model to deal with large-scale evidence 
information needs to be further investigated. 
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