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Abstract 

Sewer pipe systems are essential for social and economic welfare. Managing these systems requires robust predictive models 

for degradation behaviour. This study focuses on probability-based approaches, particularly Markov chains, for their ability 

to associate random variables with degradation. Literature predominantly uses homogeneous and inhomogeneous Markov 

chains for this purpose. However, their effectiveness in sewer pipe degradation modelling is still debatable. Some studies 

support homogeneous Markov chains, while others challenge their utility. We examine this issue using a large-scale sewer 

network in the Netherlands, incorporating historical inspection data. We model degradation with homogeneous discrete and 

continuous time Markov chains, and inhomogeneous-time Markov chains using Gompertz, Weibull, Log-Logistic and  

Log-Normal density functions. Our analysis suggests that, despite their higher computational requirements, inhomogeneous-

time Markov chains are more appropriate for modelling the nonlinear stochastic characteristics related to sewer pipe 

degradation, particularly the Gompertz distribution. However, they pose a risk of over-fitting, necessitating significant 

improvements in parameter inference processes to effectively address this issue. 
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1. Introduction 

Sewer networks are essential for societal and economic welfare but face management challenges such as 

budget constraints, environmental changes, and complex degradation processes. Predictive tools for degradation 

are becoming crucial as these systems reach the end of their design life, aiding in efficient maintenance and 

logistics (Ribalta et al. 2023). Robust models for sewer pipe degradation are critical for balancing maintenance 

costs and system performance, enabling proactive maintenance, informed decision-making, and strategic 

planning (Caradot et al. 2017). 

Comprehensive reviews categorise sewer pipe degradation models into three main types: physics-based, 

machine learning (ML)-based, and probabilistic models, each with inherent limitations (Ana and Bauwens 2010; 

Malek Mohammadi et al. 2019; Hawari et al. 2020; Saddiqi et al. 2023; Zeng et al. 2023). 

Physics-based models rely on mathematical relations grounded in physical principles, but struggle with 

complex behaviours in large-scale systems like sewer networks. ML-based models, recognised for identifying 

patterns in large datasets, are limited by data quality and completeness, affecting their effectiveness (Noshahri et 

al. 2021). Despite their applications in diagnostics, ML-based models are generally unsuitable for generating 

reliable and monotonous degradation curves, limiting their utility in long-term maintenance planning (Rokstad 

and Ugarelli 2015; Caradot et al. 2018; Kantidakis et al. 2023). Comparisons of various ML models for the 

assessment of sewer pipe condition are discussed in (Nguyen and Seidu 2022; El Morer, Wittek, and Rausch 

2023). Probabilistic models consider degradation factors as random variables and share similar drawbacks with 

ML-based models, including data quality and completeness. 
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In this work, we focus on Markov chains, which are probabilistic models with the ability to predict future 

distributions associated with degradation processes. Markov chains have several advantages: (i) they convert 

condition data into ordinal numbers such as severity levels, commonly used in industry to assess the condition of 

infrastructure assets (Tran, Lokuge, Setunge, et al. 2022); (ii) capture the stochastic nature of degradation 

processes in sewer pipes; (iii) their outputs can indicate the proportions of pipes in specific conditions, essential 

for optimising maintenance planning. 

Two primary types of Markov chains, homogeneous and inhomogeneous-time, are prevalent in the literature 

for modelling degradation in sewer pipe networks. However, the optimal Markov chain type remains debated. 

Proponents of homogeneous-time Markov chains, such as (Micevski, Kuczera, and Coombes 2002), argue for 

their sufficiency, while proponents of inhomogeneous-time Markov chains, such as (Egger et al. 2013), question 

homogeneous-time Markov chains efficacy. This gap is what we cover with this work, since no studies have 

directly compared these models using the same dataset and discussed their suitability.  

Understanding this is crucial for sewer asset managers implementing maintenance strategies, as different 

assumptions about the degradation model can have distinct implications for maintenance policies. 

For this, we employ homogeneous-time Markov chains, and for inhomogeneous chains, we use Gompertz, 

Weibull, Log-Logistic and Log-Normal functions, commonly used in reliability engineering. Our study, using a 

large-scale sewer network case study in the Netherlands, evaluates calibration complexity and model 

performance using cross-validation and various goodness-of-fit metrics. We employ the non-parametric Turnbull 

estimator for handling the interval-censored data in the inspection dataset, serving as a reference. 

Contributions. Our key contributions are: 

 Presenting evidence that inhomogeneous-time Markov chains, despite their complexity, more effectively 

model non-linear stochastic behaviours in long-lived assets like sewer networks. 

 Exploring alternative distributions, such as Log-Logistic and Log-Normal functions, in sewer network 

degradation modelling. 

 Provide comprehensive formal definitions of the degradation models. Additionally, for calibration, we 

combine the Metropolis-Hastings (M-H) algorithm with the Sequential Least Squares Programming 

(SLSQP) algorithm for parameter inference in different Markov chains, a novel approach in this field. 

 Our implementation is available at https://gitlab.utwente.nl/fmt/degradation-models/ihctmc. 

Paper outline. Section 2 describes the methods and materials. Section 3 details the experimental setup and 

results. Section 4 analyzes the findings. 0 concludes the paper and suggests future research directions. 

Related work. The literature on sewer pipe degradation modelling identifies two primary types of Markov 

chains: homogeneous and inhomogeneous (Table 1) Homogeneous-time Markov chains (HTMCs) have constant 

transition probabilities, which means that the probabilities of transitioning between states do not change over 

time. In contrast, inhomogeneous-time Markov chains (IHTMCs) feature time-variable transition probabilities, 

indicating that the likelihood of state transitions can vary. 

From the literature, we observe that HTMCs offer simplicity and computational efficiency, making them 

easier to analyse. However, they often cannot adequately model nonlinear patterns found in stochastic 

degradation processes, where assuming constant transition probabilities may be overly simplistic. In contrast, 

IHTMCs can handle these complexities better by accommodating time-varying transition probabilities. Yet, these 

chains are computationally intensive and sometimes lack feasible closed-form solutions, complicating their 

application. 

Table 1. Research applying different types of Markov chains to model degradation in sewer pipe systems. 

Type General observations References 

Homogeneous-time 

Markov Chain 

These studies apply homogeneous-time Markov 

chains, assuming time-invariant transition rates 
and probabilities. Applications extent to 

modelling specific failure modes, such as 

corrosion. 

Micevski, Kuczera, and Coombes (2002); Baik, Jeong, and 

Abraham (2006); Dirksen and Clemens (2008); Timashev 
and Bushinskaya (2015); Lin, Yuan, and Tovilla (2019); 

Tran, Lokuge, Karunasena, et al. (2022); Jimenez-Roa et 

al. (2022) 

Inhomogeneous-time 
Markov Chain 

These studies apply inhomogeneous-time Markov 
chains, which model the transition rates based on 

survival functions. Assuming time-variant 

transition rates and probabilities. 

Le Gat (2008); Scheidegger et al. (2011); Egger et al. 
(2013) 

Others These studies focus on other forms of Markov 

chains, such as semi-Markov chains, fuzzy 

Markov chains, and ordered logistic models. 
These types of Markov chains are outside the 

scope of our analysis. 

Kleiner (2001); Kleiner, Sadiq, and Rajani (2004); Lubini 

and Fuamba (2011) 

https://gitlab.utwente.nl/fmt/degradation-models/ihctmc


2. Methods and materials 

Degradation models for sewer pipes are typically developed using inspection data adhering to standards such 
as EN13508-1 (2012) and EN13508-2 (2012) }. These standards guide the classification of damages observed 
through Closed Circuit Television (CCTV) inspections into severity levels. 

The nature of this data positions these degradation models within the domain of Multi-State Modelling 
(MSM). MSM captures a system's or component's degradation through finite states, associating well-defined 
degradation indicators for each state, providing a more granular view of the degradation process (Compare et al. 
2017). 

This is the main reason why the modelling of stochastic degradation of sewer pipes is conducted via Markov 
chains, as the states in the Markov chain correspond to a severity level. 

2.1. Inhomogeneous, homogeneous, continuous, and discrete-time Markov chains 

We start by establishing general definitions and subsequently extracting specific instances. An 

inhomogeneous continuous-time Markov chain (IHCTMC) is defined by the stochastic process         (with 

        representing time) as a tuple              , where   represents a set of finite states,    is an 

initial state distribution on   where         , and             is a time-dependent transition rate 

matrix. This matrix includes non-diagonal entries        for       and    , denoting the rate of transitioning 

from state   to state   at time  . The diagonal entries        ensure the row sum of      is zero, reflecting that the 

rate out of any state equals the sum of the rates into other states.      can be parameterized by hazard rates 

      , based on the probability density function        and the survival function       , where   signifies the 

function’s hyperparameters. The IHCTMC’s temporal evolution is described by the Forward Kolmogorov 

equation: 

         

  
                

   

 (1) 

                    represents the transition probability matrix, a continuous and differentiable function 

detailing the probability of transitioning from state   to state   within the time interval   to  , with    . Using 

Eq. 1, the master equation of the Markov chain is derived, which characterizes the probability flow between 

states by incorporating inflow and outflow terms:  

      

  
                           

       

 

       

 (2) 

Here       is the probability of being in state     at time  . The term            
    captures the rates of 

transition from state   to all the other states  , excluding self-transitions. When the hazard rate        is assumed 

to follow an exponential distribution, it becomes constant over time, hence time invariant. This introduces the 

memoryless property to the Markov chain formulation, resulting in what is formally known as a homogeneous-

continuous-time Markov chain, leading to what is known as homogeneous continuous-time Markov chain 

(HCTMC). Consequently, in Eq. (1) and (2)      simplifies to  . 

If we discretize the time   into discrete intervals of length   , denoted as  , we transition from the continuous 

to the discrete time. It is possible to derive   from   using the matrix of exponents through the expression 

       . This approach enables the formulation of the homogeneous discrete-time Markov chain (HDTMC). 

This form is the simplest among Markov chain models, and state probabilities can be calculated with the 

Chapman-Kolmogorov equation: 

        (3) 

Here,    represents the probability distribution at the  th step, and    is the  -th power of the transition 
probability matrix. Additional details on Markov chains can be found in Brémaud and Brémaud (2020); 
Colombo, Abreu, and Martins (2021). 

2.2. Multi-state degradation modelling for sewer networks using parameterized Markov chains 

We first introduce our Markov chain model's structure (Fig. 1) and then its parametrisation. Let a pipe 
element defined with   sequentially arranged states               , where    indicates the pristine state and 
  , the most deteriorated state, reflects the worst condition for a specific damage type. Considering that 
inspection data for sewer networks report severities ranging from 1 to 5, and occasionally functional failures, we 
set    . 



The transitions in our Markov chain, detailed in Fig. 1, allow only progression from better to worse states. All 

severity levels may progress to functional failure    . This structure is applicable to IHCTMC, HCTMC, and 

HDTMC. 

 
Fig. 1. Markov chain structure modelling the degradation of a sewer pipe considering five degradation states and a functional failure state. 

 

The parametrization of our Markov chains involves using probability density functions to model hazard rates. 

Specifically, we apply Exponential, Gompertz, Weibull, Log-Logistic, and Log-Normal density functions. For 

the Log-Normal function, which lacks a closed-form hazard rate, we calculate it through the ratio        
      . The hazard rates and hyper-parameter ranges for the other functions are detailed in Eq. 4. 

Exponential           Rate:     (4.a) 

Gompertz                 Shape:      Scale:     (4.b) 

Weibull          
 

 
 
 

 
 
   

 Scale:      Shape:     (4.c) 

Log-Logistic          
             

        
 Scale:      Shape:     (4.d) 

From Eq. 2 we derive the system of differential equations associated with the Markov chain in Figure 1 and 

present them in Eq. 5. 
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To solve the system of differential equations in Eq. 5, we use the solve_ivp function from Python's 

scipy.integrate module. This function, based on `LSODA' from the FORTRAN odepack library, solves systems 

of ordinary differential equations. It utilizes the Adams/BDF method with automatic stiffness detection 

(SciPy_Community 2023). 

2.3. Model calibration 

To optimise the hyper-parameters of parameterized Markov chains, we employ a novel approach that 

combines the Metropolis-Hastings (M-H) algorithm (Hastings 1970)—a Markov chain Monte Carlo method—

with the Sequential Least Squares Programming (SLSQP) algorithm (Virtanen et al. 2020), specialised in solving 

constrained nonlinear problems. Although the M-H algorithm alone does not ensure optimal hyper-parameters, it 

provides a crucial initial guess that aids the SLSQP algorithm in avoiding premature convergence to local 

optima. To the best of our knowledge, this is the first time these two algorithms have been used together for this 

application. 

Sewer inspections are considered interval-censored, where state transitions occur within certain intervals but 

are not exactly known (Duchesne et al. 2013). This complexity is omitted from our likelihood function, but its 

further exploration is suggested (Van Den Hout 2016). We analyse the impact of interval-censored data using a 

non-parametric Turnbull estimator (see Section 2.4). 



The initial part of our optimisation problem aligns with Micevski, Kuczera, and Coombes (2002), starting 

with model calibration in a Bayesian optimization context. We consider            , representing the ages of 

pipes at inspection. Our likelihood function,         , where         , evaluates the probability of 

observing the data   given the parameters   and assuming the Markov model  . Incorporating    in the 

optimization introduces the constraint    
      . 

Initially, parameters   are sampled from the prior       . By applying Bayes' theorem, the posterior 

distribution          is expressed as: 

         
              

      
   

where the posterior          updates beliefs about the parameters after observing data. The marginal 

likelihood        is given by: 

                            

reflecting how well model  , across all parameter values, explains the observed data. Since the computation of 

       is complex, it is assumed that the posterior is proportional to the product of the likelihood and the prior. 

                        (6) 

For our optimization problem, we first derive the following relations: 

                     

 

   

   

           
          

  
    

where           is the survival functions, notice that              . Then the log-likelihood function ( ) 

is defined by: 
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Here,         ,      denotes the number of pipes of age   found in states that transitioned from  , denoted 

as  . E.g., if    ,         (see Fig. 1). 

The acceptance distribution   of the M-H algorithm is given by: 

                 
                    

                
         (8) 

Here,    and      are the current and proposed points in the parameter space, and    and      the 

corresponding sets of hyper-parameters. The prior           is a uniform distribution       , where   and   

define the range for each hyper-parameter in  . 

The M-H algorithm executes 50,000 iterations, with the first 49,000 as the burn-in period, and the subsequent 

1,000 samples used to compute mean values and the output     . 

Post convergence,      serves as the initial guess for SLSQP, with   parameters constrained between   and 

 . SLSQP employs convergence tolerances of eps = 1E-5 and ftol = 1E-50, and runs for up to 300 iterations. 

Upon SLSQP convergence,       . is derived and selected as the optimal set of hyper-parameters for further 

analysis. 

2.4. Non-parametric 

Non-parametric survival curve estimators compute survival probabilities without assuming a specific 

distribution for survival times. This approach provides a reliable baseline crucial in our analysis to understand 

the effects of interval-censored data. Given the interval-censored nature of our data, we employ the Turnbull  

estimator (Turnbull 1976), a non-parametric technique suitable for such data. 

For each severity level   in our Markov chain, we calibrate a Turnbull estimator. Data binarization is 

achieved using        as a threshold. Observations with        are considered non-events, associated with 

the interval        . Conversely,          are treated as events, defined by the interval       . These non-

parametric Turnbull estimators are computed using the lifelines toolbox (Davidson-Pilon 2019) in Python. 



2.5. Goodness-of-fit metrics 

Markov chains performance is evaluated via likelihood-based metrics: Akaike Information Criterion (AIC) 

(Akaike 1998) (Eq. (9.a)) and Bayesian Information Criterion (BIC) (Schwarz 1978) (Eq. (9.b)), which aid in 

model selection. Moreover, the Root Mean Squared Error (RMSE) (Eq. (9.c)) quantifies the Euclidean distance 

between the predictions of the Markov chains and the Turnbull estimator. 

            (9.a) 

                   (9.b) 

      
 

     
                

   

 

   

 (9.c) 

Both AIC and BIC include  , the number of parameters in the model, with BIC additionally considering 

       , the natural logarithm of the sample size. RMSE involves       and       , which denote the probabilities 

of being in state   at pipe age  , obtained from the Markov chains and the Turnbull estimator, respectively. 

3. Experimental setup and evaluation 

3.1. Case study 

Our case study focuses on a sewer pipe network in Breda, Netherlands, using inspection data from 1940 to 

2020. During inspections, damage type and severity are recorded according to European norms (EN13508-1 

2012; EN13508-2 2012). Malek Mohammadi et al. (2020); Salihu et al. (2022) identify the primary factors 

affecting sewer pipe condition as age, material, and content. Based on these, we categorize pipes into three 

cohorts and examine the damage code BAF, indicative of infiltration: 

 Cohort CMW: Concrete pipes carrying mixed and waste content, Length: 469 km, Pipes: 11,942. 

 Cohort CS: Concrete pipes carrying storm water, Length: 172 km, Pipes: 4,701. 

 Cohort PMW: PVC pipes carrying mixed and waste content, Length: 294 km, Pipes: 10,777. 

3.2. Experimental setup 

Our experiment aims to assess the efficacy of homogeneous and inhomogeneous Markov chains in predicting 

stochastic degradation of sewer pipes using the same dataset. Employing cross-validation, 70% of the sewer 

pipes from the case study are randomly selected for model calibration, while the remaining 30% is used to 

compute goodness-of-fit metrics described in Section 2.5. 

3.3. Results 

The different types of Markov chains are calibrated using data from cohorts CMW, CS, and PMW on 

infiltration, following the procedure described in Section 2.3 using the training set. 

Table 2 presents the goodness-of-fit metrics for both the training and test sets, while Figure 2 illustrates the 

state probabilities. The results from the Turnbull estimator for both sets are also displayed. The vertical grey 

dashed lines in the figures denote the last inspection used for model training. 

By solving Eq. (1), we obtain the transition probability matrix over time          . Figure 3 displays these 

probabilities for cohort CS and infiltration. 

4. Findings 

4.1. Comparison between cohorts 

For all cohorts, the inhomogeneous time Markov chains (modeled with Gompertz, Weibull, Log-logistic, and 

Log-normal functions) outperform the homogeneous time Markov chains (modeled with the Exponential 

function and HDTMC) by achieving the lowest values in all goodness-of-fit metrics in Table 2. 



Table 2. Goodness-of-fit metrics computed on the training and testing sets for different Markov chains.  

Blue and red colors indicate the best and worst scores, respectively. 

    Training set Test set 

Cohort Type Func.     RMSE AIC BIC RMSE AIC BIC 

CMW 

IHCTMC Gompertz 24 0.025 57431 57601.8 0.0337 20436 20583.2 

IHCTMC Weibull 24 0.0233 57414.8 57585.5 0.0361 20478 20625.2 

IHCTMC Log-Logistic 24 0.0219 58544.4 58715.1 0.0391 20861.2 21008.4 

IHCTMC Log-Normal 24 0.0221 58553.6 58724.3 0.0385 20823.2 20970.3 

HCTMC Exponential 15 0.0312 59574.6 59681.3 0.0359 21142.1 21234 

HDTMC - 15 0.0312 59574.6 59681.3 0.0359 21142.1 21234 

CS 

IHCTMC Gompertz 24 0.0358 3532.8 3665.8 0.0468 1179.4 1290.9 

IHCTMC Weibull 24 0.0326 3850 3983 0.0423 1269 1380.5 

IHCTMC Log-Logistic 24 0.0313 4111.3 4244.3 0.0427 1345.9 1457.4 

IHCTMC Log-Normal 24 0.033 4035.1 4168.1 0.0446 1324.4 1436 

HCTMC Exponential 15 0.0593 4006.7 4089.8 0.0583 1359.1 1428.8 

HDTMC - 15 0.0593 4006.7 4089.8 0.0583 1359.1 1428.8 

PMW 

IHCTMC Gompertz 24 0.0199 2349.3 2495.3 0.0172 989.7 1114.7 

IHCTMC Weibull 24 0.0153 5522 5668 0.0403 1822.1 1947 

IHCTMC Log-Logistic 24 0.0217 4699.7 4845.7 0.0178 1523.1 1648 

IHCTMC Log-Normal 24 0.0211 3588.2 3734.2 0.0179 1493.6 1618.6 

HCTMC Exponential 15 0.0297 2438.6 2529.9 0.0256 1002.8 1080.9 

HDTMC - 15 0.0297 2438.6 2529.9 0.0256 1002.8 1080.9 

 

Notice that a smaller RMSE in Table 2 suggests a closer alignment of the Markov chains with the Turnbull 

estimator. Also, the goodness-of-fit metrics for both homogeneous time Markov chains are identical, which is 

consistent with the theoretical mapping of one into the other. This is visually corroborated in Figure 2. In Table 
3, we compute the error for each goodness-of-fit metric in Table 2 between the best performing inhomogeneous 

and homogeneous Markov chain for each cohort, relative to the largest value. 

From Table 3, it is evident that inhomogeneous Markov chains generally improve over homogeneous Markov 

chains, except for the BIC results for cohort PMW (marked with †), where the homogeneous Markov chains 

showed more favorable outcomes. 

Table 3. Error between the best inhomogeneous and homogeneous Markov chains. 

 Training set Test set 

Cohort RMSE AIC BIC RMSE AIC BIC 

CMW 29.8% 3.6% 3.5% 6.1% 3.3% 3.1% 

CS 47.2% 11.8% 10.4% 27.4% 13.2% 9.7% 
PMW 48.5% 3.7% 1.4% 32.8% 1.3% 3.0%† 

4.2. Transition probabilities over time 

For further clarification and illustrative purposes in understanding the behaviour within different types of 

Markov chains, Figure 3 displays the transition probability variations among Markov chains in the CS cohort. 

The homogeneous time Markov chain, employing the Exponential distribution, maintains constant transition 

probabilities over time, reflecting its homogeneous and memoryless properties. Conversely, the inhomogeneous 

time Markov chains reveal diverse behaviours in their transition probabilities, depicting distinct temporal 

variations. Notice that there are also differences in the transition probabilities between inhomogeneous Markov 

chains, due to the different assumptions on the density functions. 

4.3. Overfitting 

All inhomogeneous Markov chains map well where data is available (up to around 70-year-old pipes, see gray 

dashed vertical lines in Figure 2, however, beyond this point, these models tend to move faster to worse 

conditions. This is likely related to the additional degrees of freedom that inhomogeneous Markov provides.  

This effect is less in homogeneous Markov chains because they have fewer degrees of freedom. Thus, future 

research should consider this aspect in the model calibration, to improve the predictive capabilities of 

inhomogeneous time Markov chains. 



 

Fig. 2. State probability       for different Markov chains. Dashed lines are the Turnbull estimators. For Cohort  

(a) CMW, (b) CS, (c) PMW. 

 

Fig. 3. Transition probabilities           for cohort CS on infiltration. 

4.4. Comparing inhomogeneous Markov chains 

Upon closer examination of inhomogeneous Markov chains modeled with Log-Normal, Log-Logistic, 

Weibull, and Gompertz density functions, Table 2 reveals that the Gompertz distribution consistently 

demonstrates good performance across all cohorts and goodness-of-fit metrics, followed by Weibull and Log-

Logistic density functions. Notably, the Weibull distribution shows poor performance for cohort PMW, likely 

due to sub-optimal parameters resulting from convergence in local optima. 



5. Conclusions and future research 

We examine the effectiveness of homogeneous and inhomogeneous Markov chains in modelling stochastic 

degradation in sewer pipes. We introduce four inhomogeneous Markov chain models parameterized with Log-

Normal, Log-Logistic, Weibull, and Gompertz density functions, and compare them against a homogeneous 

Markov chain with an Exponential distribution and discrete-time Markov chains using the same dataset. 

These models are calibrated using Metropolis-Hastings and Sequential Least Squares Programming 

algorithms, utilizing historical inspection data from a Dutch sewer network. Additionally, we employ the 

Turnbull estimator as a reference to account for the interval-censoring in the dataset. 

From the dataset, we establish three cohorts and assess the fit of the Markov chains using various goodness-

of-fit metrics. Our findings suggest that, despite their complexity, inhomogeneous time Markov chains more 

effectively model the nonlinear stochastic behaviours observed in sewer network inspection data. In particular, 

the inhomogeneous time Markov chain modeled with the Gompertz distribution consistently showed good 

performance. 

This observation aligns with Mizutani and Yuan (2023), which recommends inhomogeneous Markov chains 

to model time-varying transition probabilities in bridge structures. This result is crucial for sewer asset managers, 

as deriving maintenance policies for sewer pipes requires accounting for these nonlinearities in degradation 

models, since different assumptions may yield distinct maintenance policy implications. 

To maintain the severity levels within the model and to address the nonlinearities in the degradation process 

of sewer pipes, it is essential to adequately evaluate the inhomogeneous behaviours. The use of homogeneous 

time Markov chains is advised only if the modeler can substantiate this assumption beforehand. 

Future research. Future research directions include: 

 Addressing the omission of interval censoring during the calibration of our inhomogeneous time 

Markov chains, which approximate the Turnbull estimator, requires further investigation to assess the 

validity of neglecting interval censoring. 

 Expanding our models to consider pipe length and the distribution of degradation along the sewer pipe, 

beyond focusing solely on the most severe pipe condition during inspections. 

 Developing models that incorporate covariates without forming cohorts to minimize cohort selection 

biases. 

 Examining model performance in various cities, delving into domain adaptation using tools like 

Reinforcement and Transfer Learning. 

 Integrating uncertainty quantification, vital for decision making, requires studies on accurate 

uncertainty bound estimation. 

 Despite our calibration process's efficacy, further exploration of alternative optimisation techniques for 

nonlinear constrained problems is needed to improve parameter inference speed, aiming to reduce over-

fitting. 

 Future studies should also investigate the application of these models to optimize maintenance and 

inspection policies in sewer networks. 
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